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Numerical methods

Definition and motivation

Numerical methods are useful tools in engineering and science to solve complex problems.
The idea is simulating a physical problem with a numerical model.

Its main advantage is to simulate complex scenarios without building costly scale models,
and provide data difficult or impossible to measure in a real model.
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Numerical methods
Aspects to build an accurate and fast numerical method

1) Correct implementation of the physical governing equations
and the accuracy of the mathematical algorithms. ITISUP TO YOU

IT IS NOT UP TO US

Therefore, in order to obtain the best performance, the code must be optimized and
parallelized as much as possible according to the available resources of hardware.



Numerical methods

Current hardware to execute our numerical methods

Central Processing Units (CPUs):

The current CPUs have multiple processing cores, making possible the distribution of the
workload of a program among the different cores dividing the execution time.

CPUs also present SIMD instructions (Single Instruction, Multiple Data) that allow an
operation on multiple data simultaneously.

The parallelization task on CPUs can be mainly performed by using MPI (Message Passing
Interface) or OpenMP (Open Multi-Processing).

Graphics Processing Units (GPUs):

Research can be also conducted with the new GPU technology for problems that previously
required high performance computing (HPC).

Recently the GPGPU programming (General Purpose on Graphics Processing Units) has
experienced a strong growth in all fields of the scientific computing.

A DETAILED DESCRIPTION ABOUT GPU WILL BE SHOWN LATER



TOP SUPERCOMPUTERS IN THE WORLD

TOPS500 List - November 2010 (1-100)
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TOP SUPERCOMPUTERS IN THE WORLD
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D List - June 2011 (1-100)
Rmax and Rpeak values are in TFlops. For more details about other fields, check the TOPS500 description.
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GPUs are an accessible tool to accelerate SPH,
all numerical methods in CFD and any computational method
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Numerical methods

How long can be a simulation???

30,000 particles

1.5s of physical time
prototype dimensions
simple geometries

Gate Obstacle Walls

NN\ |

—
0.24

0.61

0.12

0.25

Yeh and Petroff
experiment



Numerical methods

How long can be a simulation???

2004: over 2-3 hours
2008: 1 hour
2010: 12 mins en single-core CPU

3 mins en multi-core CPU
17 segundos en GPU

Time: 0.50 s




Numerical methods

How long can be a simulation???

2004: over 2-3 hours
2008: 1 hour
2010: 10 mins en single-core CPU

3 mins en multi-core CPU
17 segundos en GPU

2011777




Numerical methods

How long can be a simulation???

2004: over 2-3 hours
2008: 1 hour

2010: 10 mins en single-core CPU
3 mins en multi-core CPU
17 segundos en GPU

2011

5,000,000 particles
24s of physical time
real dimensions
complex geometries

3 hours on GPU
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SPH method

Different descriptions for numerical methods

The physical governing equations of a numerical method can be solved:
- with the help of a grid using an Eulerian description or
- without it with a Lagrangian description.

The meshfree methods make easier the simulation of problems:
with large deformations

- advanced material

- complex geometries

- nonlinear material behavior

- discontinuities and singularities.

Meshfree methods are used for solid mechanics as well as for fluid dynamics.

We will focus here on the meshfree particle method named SPH:
Smoothed Particle Hydrodynamics



SPH method

PHYSICAL GOVERNING EQUATIONS

'

EULERIAN DESCRIPTION
(spatial description)

COMPUTATIONAL METHODS

'

GRID-BASED METHODS

S

LAGRANGIAN DESCRIPTION
(material description)

M

MESHFREE METHODS

MESHFREE PARTICLE METHODS
(particle represents a part of
the continuum domain)

SMOOTHED PARTICLE HYDRODYNAMICS



SPH method The fluid is treated as a set of particles.




SPH method

Position, velocity, mass, density, pressure
of each particle is known.
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SPH method
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SPH mEthOd NEIGHBOR PARTICLE

LIST INTERACTION

Navier-Stokes equations approximated
discretely by a summation
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SPH method
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SPH method

« Conceptually, an SPH code is an iterative process congigfithree main steps:

NEIGHBOR PARTICLE SYSTEM

LIST INTERACTION UPDATE

-neighbour list:

particles only interact with surrounding particlesated at a given distance so the
domain is divided in cells of the kernel size tduee the neighbour search to the
adjacent cells;

-particle interaction:

each particle only looks for neighbours at the e@lph cells, after verifying that the
distance between particles lies within the suppbtiie kernel, the conservation
laws of continuum fluid dynamics are computed fa pair-wise interaction of
particles;

-system update:
once the forces between neighbouring particles baea evaluated, all physical
magnitudes of the particles are updated at thetmagtstep.



SPH method
Llnitial Dataj

Neighbor list
(NL)
Particle System
@nteraction (PIJ :[\> { Update (SU) j

Save Data
(occasionally)

Conceptual diagram of the implementation of a SPH code




SPH method: drawbacks

The applicability of particle-based simulationsyigically limited bytwo
constraints: (i) simulation time, and (ii) system &ze

Thus,to obtain physically meaningful information from a simulation, one must be
able tosimulate a large-enough system for long-enough tiree

In the SPH method, applications such as the sttidgastal processes and flooding
hydrodynamics, have beé&mited until now by the maximum number of particles
In order to perform simulations within reasonalnieets.

Big simulationsfor free-surface flows:
40 million — EDF on a Blue Gene
120 million — EPFL on a Blue Gen@
200 million — ECL



SPH method: drawbacks

Blue Gene is a computer architecture project to produce several supercomputers, designed
to reach operating speeds in the PFLOPS (petaFLOPS) range, and currently reaching
sustained speeds of nearly 500 TFLOPS (teraFLOPS): Blue Gene/L, Blue Gene/C, Blue
Gene/P, and Blue Gene/Q

In November 2007, the LLNL Blue Gene/L remained at the number one spot as the world's
fastest supercomputer: 478 TFLOPS

A Blue Gene/P supercomputer One Blue Gene/L node board
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SPH runtimes

Example: Dam break evolution during 1.5s
- using 30,000 particles takes 12 mins |

If no meaninful information
- using 300,000 particles takes 9.2 ho
on a single-core machine

Why SPH is so expensive in time??

- smallAt with weakly compressible SPH scheme
O(10°%-10°) with 300,000 particles and more than 16,000 steps

- high number of neighbours/interactions per particle
™ [ 250 neighbours for 300k

300

In 2-D FVM only 4 neighbouring cells

250

200

150 -

100 ¢

50
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SPHysics project
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DEVELOPED JOINTLY BY
RESEARCHERS AT

MANCHES liER

182

Johns Hopkins Universidade de University of
University Vigo Manchester
(USA) (Spain) (UK)

SPHysics is a Smoothed Particle Hydrodynamics code primarily to study free-surface flow
phenomena. It has been jointly developed by Johns Hopkins University (U.S.A.), the
University of Vigo (Spain) and the University of Manchester (United Kingdom).



SPHysics project

As result of this research, a first serial code was developed in FORTRAN

3 SPHYSICS Home Page - SPHYSICS - Microsoft Internet Explorer
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SPHYSICS Home Page

§ . SPHysics - SPH Free-surface Flow Solver
SPHysics | >

Open-Source Smocthied Particle Hydrodymamics code

navigation . RELEASED: 1st AUGUST 2007
. SPHYSICE Home 1. Welcome to SPHysics
z Eanaterihutnrs 2. Contributors
s Dignisais 3. Downleoads
s SPHYSICS EAQ 4. Documentation
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http://sphysics.org
> 20,000 downloads !!!
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The SPHysics group has focused its research ma

coastal structures, in 2D and 3D.



VALIDATION : Dynamic boundary conditions
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VALIDATION : 2D Dam break behavior
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VALIDATION : 3D Wave-structure interaction

Gate

Obstacle Walls

Yeh and Petroff
experiment
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SPHysics project

However, the SPHysics presents a high computational cost.
To perform simulations in a reasonable runtime with domains as large as the real systems,

we need to develop implementations that can exploit all the parallelism of the current
hardware systems.

- - -

000000006 ~00000000
4000000000006. 4...........&
T2900000000 4000000007

oPY s P

DUALSPHUSICS

SPHvsics

FORTRAN C++

OpenMP
CUDA
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Proposals to accelerate SPH
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Proposals to accelerate SPH

How to accelerate your SPH code with less than ....

Intel® Core ™ |7 940 at
250 EUROS 2.93GHz with 4 cores

with 480 cores

5,000 EUROS

Multi-core
OpenMP

GPU
CUDA

Multi-GPU
CUDA + MPI




Proposals to accelerate SPH

How to accelerate your SPH code with less than ....

Intel® Core ™ |7 940 at
250 EUROS 2.93GHz with 4 cores

with 480 cores

5,000 EUROS

Multi-core
OpenMP

4.5x

GPU
CUDA

55X

Multi-GPU
CUDA + MPI

113X




Proposals to accelerate SPH

How to accelerate your SPH code with less than ....

55x not only means
that a simulation of 55 mins can be performed in Inin

but alsolarge simulations can be performed
In a reasonable computational runtime

and different tests can be performed in a short tire
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Multi-core implementation

Programming languages: OpenMP
Implementation techniques and optimizations
Avalilable hardware: Multi-core CPUs

Results and speedups



Multi-core implementation

OpenMP is used to implement the multi-core SPHode.

ADVANTAGES:
OpenMP is gortable and flexible programming model.

Its implementation is straightforward am@ significant changesin comparison
to the single-core code are required.

The time dedicated to communication between different etxac threads is
reduced since theame shared memory is used

DISADVANTAGES:

Using OpenMP on its own means that this parallelization avtémnial speedup
arelimited to a small number of cores(i.e. the number of cores existing on the
compute node).



Multi-core implementation

Programming languages: OpenMP
Implementation techniques and optimizations
Avalilable hardware: Multi-core CPUs

Results and speedups



Multi-core implementation

Implementation techniques and optimizations

Initial Data

Nelghbor |ISt
(NL)

Particle System
Llnteractlon (PI)J ::> L Update (SU) J

Save Data
(occasionally)

Conceptual diagram of the
CPU implementation of a SPH code




Multi-core implementation

Parallelization of... 2?2?7777

_ ~ Dominguez et al. “Neighbour lists in Smoothed Fteti
In the case of a dam-break simulation: Hydrodynamics”. IINMF, 2010.

Cell linked list Verlet list

® NL(CLL) mPI mSU BNL(VL) mPI mSU

Force computation is the most expensive step of SPH in terms of aiiopal runtime.
This is a key process that must be implemented in parallel in tordecelerate SPH.



Multi-core implementation

Implementation techniques and optimizations

‘ Initial Data J
g
" Neighbor list |
\ (NL)

. f/ [ \\\ \\
Particle | N | System
Interaction (PI) ]ﬁ/ . Update (SU)

J L
| %
 Save Data

(occasionally)

\\
\\_

Conceptual diagram of the
CPU implementation of a SPH code

|
,J

Most of the sequential tasks and operations that
iInvolve a loop over all particles are performed
using the different cores of the same CPU.

Several parts of the SPH code can be
parallelized, but mainly, the force calculation
since it Is the most expensive part of the
method.

Problems with this parallel programming;

- the concurrent access to the same memory
positions for read-write giving rise to
unexpected results.

- the load balancing to distribute equally the
work among threads.



Multi-core implementation

Implementation techniques and optimizations

Symmetry in particle interaction
SSE instructions

Dynamic load balancing



Multi-core implementation

Implementation techniques and optimizations

Symmetry in particle interaction:
The concurrent access to memory to write is avoided sincle #gead has
Its own memory space where the forces of each particle ataradated.

In 3D, each cell interacts with 14 cells (right) instead of 27 (left).



Multi-core implementation
Implementation techniques and optimizations

SSE instructions

for (i=ibegin;i<iend;i++) {
for (j=jbegin;j<jend;j++) {
if (Distance between particle[i] and particle[j] < :

}

) ComputeForces (1,3) ;

}

int npar=0;
int particlesi[4],particlesj[4];
for(int i=ibegin;i<iend;i++) {
for (int j=jbegin;j<jend;j++) {
if (Distance between particle[i] and particle[j] < 2h){
particlesi[npar]=i; particlesj[npar]=j;
npar++;
if (npar==4) {
ComputeForcesSSE (particlesi,particles]) ;
npar=_;

}

}

}
for (int p=0;p<npar;p++)ComputeForces (particlesi[p],particlesj[p]);

Pseudocode in C++ of the force computation between particles of two cells without vectorial
instructions (up) and grouping in blocks of 4 pair-wise of interaction using SSE instructions (down).



Multi-core implementation

Implementation techniques and optimizations

Dynamic load balancing
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The dynamic scheduler of OpenMP is also employed
distributing cells in blocks of 10 among different threads.
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Multi-core implementation

Programming languages: OpenMP
Implementation techniques and optimizations
Avalilable hardware: Multi-core CPUs

Results and speedups



Multi-core implementation Available hardware

Deskt Intel® Core ™ |7 940
eSKLop at 2.93GHz with 4 cores

250 EUROS

with Hyper-threading

' 2 X Intel Xeon X5500
Workstation at 2.67 GHz with 2x4 cores 900 EUROS

: 8 x Intel dual-core
Supercomputlﬂg ltanium Montvale

Center at 1.6 GHz with 16 cores




Multi-core implementation Available hardware

# threads

Desk Intel® Core ™ |7 940
eskKtop at 2.93GHz with 4 cores
with Hyper-threading

8 logical threads
with Hyper-threading

Workstation 2 x Intel Xeon X5500 8 threads
at 2.67 GHz with 2x4 cores
- 8 x Intel dual-core
Supercomputing Itanium Montvale 16 threads

Center at 1.6 GHz with 16 cores

R I ////f/fj



Multi-core implementation

Programming languages: OpenMP
Implementation techniques and optimizations
Avalilable hardware: Multi-core CPUs

Results and speedups



Multi-core implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
2 X Intel Xeon X5500 at 2.67 GHz with 2x4 cores

8 X Intel dual-core Itanium Montvale at 1.6 GHz wih 16 cores
6

——i7-th1
- == i7-th8
———Ts1-thl N

=== Ts1-th8

e [1-th 1

1 --- rume CESCA

time (h)

0 200,000 400,000
Np

Computational runtimes with the Multi-core CPU modd



Multi-core implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
2 X Intel Xeon X5500 at 2.67 GHz with 2x4 cores
8 x Intel dual-core Itanium Montvale at 1.6 GHz wih 16 cores

— 7-th1
- == i7-th8
e TS 1-th1 e

=== Ts1-th8

e [=1-th 1
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Computational runtimes with the Multi-core CPU modd



Multi-core implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
2 X Intel Xeon X5500 at 2.67 GHz with 2x4 cores
8 x Intel dual-core Itanium Montvale at 1.6 GHz wih 16 cores

10

9 CESCA
——CESGA 83X
8
7 - —xen 70X
o 6
g s 7 4.5x
0

0 200000 400000 600000 800000 1000000
Np

Computational runtimes with the Multi-core CPU modd



Multi-core implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
2 X Intel Xeon X5500 at 2.67 GHz with 2x4 cores
8 x Intel dual-core Itanium Montvale at 1.6 GHz wih 16 cores

50 e 7-thl

& o o
[ < -
40 Z e TS]-thl ("\

CESGA MACHINE IS THE SLOWEST

10

0 200,000 400,000 600,000 800,000 1,000,000
Np

Computational runtimes with the Multi-core CPU modd



Multi-core implementation

CPU Intel® Core ™ 7 940 at 2.93GHz with 4 cores
2 X Intel Xeon X5500 at 2.67 GHz with 2x4 cores

50

—7-thl /
40 /{ i7-th8 o

INTEL 17 1S THE CHEAPEST OPTION
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Computational runtimes with the Multi-core CPU modd



Multi-core implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
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Computational runtimes with the Multi-core CPU modd



Multi-core implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores

Speedup vs. 1 Speedupvs. 4

1M hours CPU CPU
1CPU  40.71 1.00
4CPU  9.09 1.00
250 EUROS

‘r@ Y

Speedup of using the Multi-core CPU model



Multi-core implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores

50

40

e 1CPU

40 h

30

time (h)

20

4CPU 9 h

10

200,000

400,000 600,000

1,000,000 4.5X

800,000
Np

Computational runtimes with the Multi-core CPU modd



Outline

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files/paist-processing

- DualSPHysics code



GPU implementation

Introduction to GPUs and CUDA
Implementation techniques and optimizations
Available hardware: GPUs

Results and speedups



Graphics Processing Unit

*GPUs are a new technology imported from the compgéenes industry.
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Graphics Processing Unit

*GPUs are a new technology imported from the compgiéenes industry.
*GPUs are designed teeat large data flows.

Due to the development of the video games market and muliandteir
computing powehas increased much faster than CPUs



CPUs double their capacity each 18 months (x1.5 anual, x60 decade)

GPUs double their capacity each 12 months (x2.0 anual, x1000 decade)
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Graphics Processing Unit

*GPUs are a new technology imported from the compgiéenes industry.
*GPUs are designed teeat large data flows.

Due to the development of the video games market and muliandteir
computing powehas increased much faster than CPUs

GPUs are massivelynultithreaded manycore chips For example, with a
GTX480 card a maximum of 23,040 threads can be in executionl&neously.

*GPUs appear to be aaccessible alternative to accelerate SPKince they are
cheapandease-of-maintenance comparison with large cluster machines.

*The GPU parallelisation technigue uses @¢DA developed by NVIDIA.

‘HOWEVER, AN EFFICIENT AND FULL USE OF THE CAPABILITIES OF
THE GPU IS NOT STRAIGHTFORWARD.



Graphics Processing Unit

General ideas about CUDA:

Kernet code to be executed on GPU
. execution task
. group of threads that executes the kernel
. array of blocks that executes the same kernel
Warp: active blocks assigned to a multiprocessor

are executed in groups of 32 tasks-threads



Graphics Processing Unit

(Device) Grid

Block (0, 0) Block (1, 0)

Memory Architecture

Thread: privatéocal memory ! ’

Block: shared memory
visible to all threads of the block

All threads have access to the i i
sameglobal memory

Host

Thread (0, 0) Thread (1,0)  Thread (0,0) Thread (1, 0)

2 read-only memory spaces
theconstant memory
andtexture memorgspaces




GPU implementation

Introduction to GPUs and CUDA
Implementation techniques and optimizations
Available hardware: GPUs

Results and speedups



GPU implementation
« Conceptually, an SPH code is an iterative process congigfithree main steps:

NEIGHBOR PARTICLE SYSTEM

LIST INTERACTION UPDATE

-neighbour list:

particles only interact with surrounding particlesated at a given distance so the
domain is divided in cells of the kernel size tduee the neighbour search to the
adjacent cells;

-particle interaction:

each particle only looks for neighbours at the e@lph cells, after verifying that the
distance between particles lies within the suppbtiie kernel, the conservation
laws of continuum fluid dynamics are computed fa pair-wise interaction of
particles;

-system update:
once the forces between neighbouring particles baea evaluated, all physical
magnitudes of the particles are updated at thetmagtstep.



GPU implementation

GPU implementation of... 2?77?77

_ ~ Dominguez et al. “Neighbour lists in Smoothed Fteti
In the case of a dam-break simulation: Hydrodynamics”. IINMF, 2010.

Cell linked list Verlet list

® NL(CLL) mPI mSU BNL(VL) mPI mSU

Force computation is the most expensive step of SPH in terms of aiiopal runtime.
This is a key process that must be implemented in parallel in tordecelerate SPH.



GPU implementation

= oy
<5

Neighbor List
Neighbor list
(N L) Data transfer

(NL)
CPU-GPU

N

nteraction (Pl)
[ Particle ] [ System ]
Interaction (PI) :D Update (SU) Data transfer :">[ System ]
@ GPU-CPU Update (SU)
{ Save Data j Saita
(occasionally) [(occasionally)J

Conceptual diagram of the Conceptual diagram of the
CPU implementation of a SPH code GPU implementation of a SPH code

&

i




GPU implementation
GPU implementation of PARTICLE INTERACTION:

CPU / C++ GPU / CUDA

i —>j=2 g = Tap Tzt ...




GPU implementation
GPU implementation of PARTICLE INTERACTION:

CPU / C++ GPU / CUDA




GPU implementation

Thread
O Identified by threadldx

GPU / CUDA

Thread Block
Identified by blockldx

\ Grid of Thread Blocks

T

Result data array

Rk




GPU implementation

Thread
O Identified by threadldx

GPU / CUDA

Thread Block
Identified by blockldx O 00 00 00O

Particle interaction can be implemented on GPU comgering
one execution thread to compute, for only one paxtle,
the force resulting from the interaction with all its neighbours.

Result data array

de [pj p-J
— | = | L 4+ L DIVVI +g | .
(dt i ! sz Pi2 | nd.




GPU implementation

Llnitial Data]
Elnitial DataJ

~ -
Data transfer
<L CPU-GPU
Neighbor List —-=
GPU
(NL) } Neighbor list
(NL)

i

Data transfer
CPU-GPU /&

Particl s
Lnter:Zt;Zr? (p|J Particle System
Interaction (PI) ‘:|J> Update (SU)

Data transfer System = =
R
GPU-CPU
<L -
Save Data Save Data
(occasionally) (occasionally)

Conceptual diagram of the Conceptual diagram of the
partial GPU implementation of a SPH code full GPU implementation of a SPH code

i




Dominguez et al. “Neighbour lists in Smoothed Rt

GPU implementation Hydrodynamics”. IINMF, 2010.
GPU implementation of NEIGHBOUR LIST:

Cell-linked list,divided in different operations:

() domain division into square cells of side 2i, ffte size of the kernel domain)
(i) determining the cell to which each particle dorags,

(i) reordering the particles according to the sdlhdixsort algorithm by CUDA)
(iv) ordering all arrays with data associated toheaarticle and, finally

(V) generating an array with the position indexidd first particle of each cell.




GPU implementation

GPU implementation of SYSTEM UPDATE:

This process consists on tasks that can be easif§ig@ized as updating the values of
all particle data for the next time step.

We need:
- the current particle data

- acceleration and density derivative
- computing the new value of the time step accortimglonaghan and Kos (1999)
- the maximum and minimum values of different valeal(force, velocity and

sound speed) are calculated usingraaiction algorithm by CUDA.



GPU implementation

RECIPES TO COOK SPH-GPU

Basic strategies for Performance Optimization

Expose as much parallelism as possible
Minimize CPU «—GPU data transfers

Optimize memory usage for maximum bandwidth
Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latency



Graphics Processing Unit

PROBLEMS TO BE SOLVED:
-Memory usage

-Divergence

-Coalescence

-Occupancy



Graphics Processing Unit

(Device) Grid
Memory usage

Block (0, 0) Block (1, 0)

| | oy

Thread (0, 0) Thread (1,0)  Thread (0,0) Thread (1, 0)

Memory Architecture

Thread: privatéocal memory

Block: shared memory
visible to all threads of the block

All threads have access to the i i i i
sameglobal memory

Host

2 read-only memory spaces
theconstant memory
andtexture memorgspaces




Graphics Processing Unit

Divergence

GPU threads are grouped in sets of 32 namvados(CUDA language).

When a task is being executed over a warp, 3Rethreads carry out this task
simultaneously.

However,due to conditional flow instructions in the code not all the threads will
perform the same operation, fte different tasks are executed in a sequential
way giving rise to a high loss of efficiency.

This divergence problem appears durpayticle interaction since each thread has
to evaluate what potential neighbors are real neighborshef garticle before
computing the force



Graphics Processing Unit

each colour represents a task

Divergence

NO DIVERGENT WARPS

i
i

16 threads executing the

same task over 16 values 16 threads executed

simultaneously



Graphics Processing Unit

each colour represents a task

DIVERGENT WARPS !l

J
i
A

16 threads executing execution of the 16 threads
three different tasks (IF) will take the runtime needed to carry out
over 16 values the three tasksequentially



Graphics Processing Unit

Coalescence

The globalmemory of the GPU is accessed in blocks of 32, 64 or 128 bytes,
so the number of accesses to satisfy a warp depends on hopegidata are.

In particle interaction

although particle data are reordered according to the tedlg belong to, a
regular memory access is not possible since each partisldifiarent neighbors
andtherefore each thread will access to different memory posibns, which
may, eventually, be far from the rest of the positions in tlaepy



Graphics Processing Unit

Coalescence

COALESCED ACCESS

Only 1 access to
memory is required

13
14
15
16

d

16 threads executing 16 values stored in
over 16 values 16 consecutive memory positions



Graphics Processing Unit

Coalescence

NON COALESCED ACCESS

4 memory accesses
are required

i

16 threads executing 16 values stored in
over 16 values different memory positions



Graphics Processing Unit

Occupancy

Occupancy ighe ratio of active warps to the maximum number of warps
supported on a multiprocessorof the GPU or Streaming Multiprocessor (SM).

Since the access to the GPU global memory is very irregulanglihe particle
Interaction, it isessential to have the largest number of active warps order
to hide the latencies of memory access and maintain the laaedas busy as
possible.

The number of active warps depends orthe registers required for the CUDA
kernel, the GPU specifications and the number of threadblpek.



Graphics Processing Unit

Occupancy

Max. of 32-bit registers per SI‘M 8 K

Technical specifications [1.0{1.1{1.2]1.3| 2.x
Max. of threads per block 512 10p4
Max. of resident blocks per SIM 8
Max. of resident warps per SM 24 32 48
Max. of resident threads per SM 768 1024 | 1536
16 K |32K




Graphics Processing Unit

Occupancy
100%
e S 20-21 (varying threads)
- e e sM20-21 (256 threads)
80%
e 5N 12-13 (varying threads)
\ - e e sM12-13 (256 threads)
60% |\
\
\
40% .
‘-.‘---------------
20% .
0%

20 25 30 35 40 45 50 55
Registers



GPU implementation

RECIPES TO COOK SPH-GPU

Basic strategies for Performance Optimization

Expose as much parallelism as possible
Minimize CPU «—GPU data transfers

Optimize memory usage for maximum bandwidth
Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latency



GPU implementation

_ [Initial Data]
Llnitial DataJ

< L
rData transfer
@ CPU-GPU
) Neighbor List ==
| . . GPU
x)L (NL) J ( Nelg(hNch;r list }

The most efficient option is to keep all data ia themory of the GPU
where the three main processes of SPH are exeicupzdallel.

: 9 R VT T . —
<= ,
> System S
Data transfer
GPU-CPU
% <
Save Data Save. Data
(occasionally) (occasionally)

Conceptual diagram of the Conceptual diagram of the
partial GPU implementation of a SPH code full GPU implementation of a SPH code




GPU implementation

RECIPES TO COOK SPH-GPU

Basic strategies for Performance Optimization

Expose as much parallelism as possibleONE
Minimize CPU «—GPU data transfers

Optimize memory usage for maximum bandwidth
Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latency



GPU implementation

CPU-GPU COMMUNICATION

Initially, data were allocated on CPU,
so there is a first memory transfer
(from CPU to GPU)

All particle information remains
on the GPU memory.

When saving data is required,
only the desired data is transfer
from GPU to CPU.

[Initial DataJ

L

rData transfer
CPU-GPU

<l

“ Neighbor list g
e

Particle System
Interaction (PI) :> Update (SU)

=

Data transfer
GPU-CPU

<

Save Data
(occasionally)

Conceptual diagram of the
full GPU implementation of a SPH code




GPU implementation

RECIPES TO COOK SPH-GPU

Basic strategies for Performance Optimization |

Expose as much parallelism as possibleONE
Minimize CPU «—GPU data transfers DONE
Optimize memory usage for maximum bandwidth
Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latency



GPU implementation

The use of the constant memory and registers is maximized

Block (0, 0)

el

Thread (1, 0)

Thread (0, 0)




GPU implementation

RECIPES TO COOK SPH-GPU

Basic strategies for Performance Optimization

Expose as much parallelism as possibleONE

Minimize CPU «—GPU data transfers DONE

Optimize memory usage for maximum bandwidth IMPROVED
Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latency



GPU implementation

- code divergencecan appear since when the possible neighbourseafticleare
evaluated, some of them amsal neighbourand the force computation is carried out
while other particles anmeot real neighbourand no computation is performed.

00 OO0 00

o 0¥ 20, On O

00 05900705059, 0RO 00 00
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GPU implementation

DIVERGENT WARPS !l

real neighbour

i
B

Total runtime = Runtime of 4 Runtime of
computing force no computation

16 threads executing execution of the 16 threads
two different tasks will take the runtime needed to carry
over 16 values out the two tasks sequentially



GPU implementation

- code divergence can appear since when the possible neighbayrarttieare
evaluated, some of them amsal neighbourand the force computation is carried out
while other particles anmeot real neighbourand no computation is performed.

- using cells of sizé instead oR2h, we increase the number of half-warps with only one
execution task (all real neighbours or none), thus we reduce the divergence




GPU implementation

RECIPES TO COOK SPH-GPU

Basic strategies for Performance Optimization

Expose as much parallelism as possibleONE

Minimize CPU «—GPU data transfers DONE

Optimize memory usage for maximum bandwidth IMPROVED
Minimize divergent warps IMPROVED

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latency



GPU implementation

- the access to the global memory of the device is irregular etare is no way to
organise the data to get a coalescent access for all thégsartic

"%+ -




GPU implementation

- the access to the global memory of the device is irregular etare is no way to
organise the data to get a coalescent access for all thégsartic

Positions in
the memory of 5 O
the device =) -



GPU implementation

Coalescence

NON COALESCED ACCESS

4 memory accesses
are required
Instead of 1

i

16 threads executing 16 values stored in
over 16 values different memory positions



GPU implementation

- the access to the global memory of the device is irregular etare is no way to
organise the data to get a coalescent access for all thégsartic

- reordering particles, more neighbours are stored in consecutive mpasiipgns

6215-6285

oMl 3555-3595
1025-1075




GPU implementation

RECIPES TO COOK SPH-GPU

Basic strategies for Performance Optimization

Expose as much parallelism as possibleONE

Minimize CPU «—GPU data transfers DONE

Optimize memory usage for maximum bandwidth IMPROVED
Minimize divergent warps IMPROVED

Optimize memory access patternsIMPROVED

Avoiding non-coalesced accessesfVIPROVED

Maximize occupancy to hide latency



GPU implementation

We use a file with theumber of registerswe can use for all the execution kernels
depending on the compute capabilityf the card.

Starting from this value we caljust the block size depending on the GPdard to
obtain themaximum occupancy

FudaSphApi.cu

tmpxft_00001aSc_00000000-2_CudaSphApi.compute_20.cudafel.gpu

tmpxft_00001aSc_00000000-12_CudaSphApi.compute_20.cudafe2.gpu

CudaSphApi.cu

tmpxft_00001aSc_00000000-6_CudaSphApi.compute 10,cudafel.gpu

ctmpxfr_00001aSc_00000000-16_CudaSphfApi.compute_10.cudafe2.gpu

CudaSphaApi.cu

& cumpxft 0000laSc_00000000-3_ CudaSphApi.compute 12.cudafel.gpu

9  tmpxfr_00001aSc_00000000-20_CudaSphApi.compute 12.cudafe2.gpu

0 CudaSphApi.cu

i1 ptxas info Compiling entry function '_227KerCsComputeStepSymplectic2ILbOELbOEEvijPjPéfloat352 Pf52 S2 53 _S3_S2 ff' for 'sm 20'
ptxas info : Used 21 registers, 120 bytes cmem[0], 152 bytes cmem[2], 4 bytes cmem[16]

ptxas info Compiling entry function '_22SKerCsConputeStepSymplecticILbDELbDEEvjjPjPGfloatssz_PfSE_Sz_S3_53_52_52_f' for 'sm_20'
ptxas info Used 25 registers, 124 bytes cmem[0], 152 bytes cmem[2]

oo R

o »

ptxas info : Compiling entry function '_222KerCsComputeStepVerletILbOELbOEEvijPfS0_S0 PjPéfloat353_53_S3 S3_S3_fff' for 'sm 20'
16 ptxas info : Used 23 registers, 132 bytes cmem[0], 152 bytes cmem[2]

17 ptxas info : Compiling entry function '_Z27KerCsComputeStepSymplectic2ILbOELb1EEvjPjP6float352_P£S2_S2_S3_S3_S2_ff' for 'sm_20'
1 ptxas info Used 19 registers, 120 bytes cmem([0], 152 bytes cmem[2]

ptxas info Compiling entry function '_Z26KerCsComputeStepSymplecticILbOELblEEvijPjPéfloat352_Pf52_S52_S3 S3_S2_S2 f' for 'sm 20'

ptxas info Used 20 registers, 124 bytes cmem([0], 152 bytes cmem[2]

ptxas info Compiling entry function '_Z22KerCsComputeStepVerletILbOELDL1EEv3jPL£S0_S0_PjP6float3S3_S53_S3_S3_S3_fff' for 'sm 20"

ptxas info Used 21 registers, 132 bytes cmem([0], 152 bytes cmem[2]

ptxas info Compiling entry function '_Z31KerCsInteractionFt_ KHdivBgFluidIL8IpKernel2ELbOELbOEL32EEv3ijjjjPjP4int2S3_Péfloat4SS5_S1_Péfloat3PfS7_Se&_' for 'sm 20'
ptxas info Used 44 registers, 136 bytes cmem[0], 152 bytes cmem[2], 4 bytes cmem[16]

ptxas info Compiling entry function '_Z29%KerCsInteractionFt KHAivFluidIL8TpKernel2ELbOELbOELJ2SEEVijjPjPS5uint2S3_P6float4S5_S1_P6float3PfS7_S8_' for 'sm 20"
ptxas info Used 33 registers, 128 bytes cmem[0], 152 bytes cmem[2], 4 bytes cmem({16]

ptxas info Compiling entry function '_Z31KerCsInteractionFt_KHdivBgBoundIL8IpKernel2ELbOELJ2EEv)jjjPjP4int2Péfloat4S5_S1_PfSé_' for 'sm 20'

ptxas info Used 36 registers, 104 bytes cmem([0], 152 bytes cmem[2], 4 bytes cmem[16]

ptxas info Compiling entry function '_Z31KerCsInteractionFt_KHdivBgFluidILE8IpKernel2ELbOELbLI1ELJ2EEv]jjjjPjP4int253_FPéfloat455_S1_P6float3Pf57_S8_' for 'sm 20’
ptxas info Used 48 registers, 136 bytes cmem[0], 152 bytes cmem[2], 4 bytes cmem[16]

ptxas info Compiling entry function '_Z29KerCsInteractionFt_ KHdivBoundILE8IpKernel2ELbOELj2SEEvjjPjPSuint2Péfloat4S5_S1_PfSé_' for 'sm 20’

ptxas info Used 28 registers, 96 bytes cmem[0], 152 bytes cmem[2], 4 bytes cmem[16]

ptxas info Compiling entry function '_Z29%KerCsInteractionFt_ KHAivFluidIL8TpKernel2ELbOELL1ELJ2SEEvV]jjjPjPS5uint2S3_P6float4S5_S1_Péfloat3PfS7_S8_' for 'sm 20"
ptxas info Used 37 registers, 128 bytes cmem[0], 152 bytes cmem[2], 4 bytes cmem([16]

ptxas info Compiling entry function '_Z31KerCsInteractionFt KHdivBgFluidIL8IpKernel2ELbOELbOEL31EEvijjjjPjP4inc2S3_Péfloat4SS_S1_Péfloat3PfS7_Se&_' for 'sm 20'
ptxas info Used 44 registers, 136 bytes cmem[0], 152 bytes cmem[2], 4 bytes cmem[16]

ptxas info Compiling entry function '_Z29%KerCsInteractionFt_ KHAivFluidIL8TpKernel2ELDOELDOELJSEEv)jjPjP5uint2S3_FP6float4S5S_S1_Péfloat3PfS7_S8_' for 'sm 20'
ptxas info Used 33 registers, 128 bytes cmem[0], 152 bytes cmem[2], 4 bytes cmem[16]

ptxas info Compiling entry function '_Z31KerCsInteractionFt_KHdivBgBoundIL8IpKernel2ELbOELJ1EEvjjjjPjP4int2Péfloat4S5_S1 _PfSé_' for 'sm 20'

40 ptxas info : Used 36 registers, 104 bvtes cmem[0], 152 bvtes cmem[2], 4 bvtes cmem[16]




GPU implementation

RECIPES TO COOK SPH-GPU

Basic strategies for Performance Optimization

Expose as much parallelism as possibleONE

Minimize CPU «—GPU data transfers DONE

Optimize memory usage for maximum bandwidth IMPROVED
Minimize divergent warps IMPROVED

Optimize memory access patternsIMPROVED

Avoiding non-coalesced accessesfVIPROVED

Maximize occupancy to hide latency DONE



GPU implementation

Introduction to GPUs and CUDA
Implementation techniques and optimizations
Available hardware: GPUs

Results and speedups



GPU implementation Available hardware

Processor | Memory Power
GPU # of cores clock (GB) usage Heat (2C) | Price (€)
(GHz) (watts)
good
M1060 240 1.36 4 188 cooling 1200*
system
for server
GTX 285 240 1.48 1 204 105 330*

* year 2009



GPU implementation

Introduction to GPUs and CUDA
Implementation techniques and optimizations
Available hardware: GPUs

Results and speedups



GPU implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores

50

40

e 1CPU 40 h

30

time (h)

20

4CPU 9h

10

200,000

400,000 600,000

4.5x
800,000 1,000,000

Np

Computational runtimes with the Multi-CPU model



GPU implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

50

= 1CPU
40

30 4CPU

time (h)

20

—1GPU 45 min
10

200,000 400,000 600,000 800,000 1,000,000

Np

Computational runtimes with the Multi-CPU and GPU model



GPU implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

60

—

/ 55X

Speedup
w
o

20

10

0
0 100,000 200,000 300,000 400,000 500,000 600,000 700,0000,080 900,000 1,000,000

Np

Speedup of using the GPU model



GPU implementation

The FERMI card i$5 times more efficient than the best CPU single-core code.

The achievegberformance can be compared to the big cluster machines

Following Maruzewski et al. 2010:

100 cores with efficiency of 60% of the supercomputer IBMe Gene/L
to equal the speedup achieved by only a Fermi Card

1 GTX480= 100 cores of BlueGene



GPU implementation

The FERMI card i$5 times more efficient than the best CPU single-core code.

The achievegberformance can be compared to the big cluster machines

Following Maruzewski et al. 2010:

100 cores with efficiency of 60% of the supercomputer IBMe Gene/L
to equal the speedup achieved by only a Fermi Card

1 GTX480= 450 EUROS



GPU implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Speedup vs. 1 Speedupvs. 4

1M hours CPU CPU
1ICPU 4071 1.00
ACPU  9.09 4.48 1.00
1GPU = 0.75
450 EUROS

Speedup of using the GPU model



Outline

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files/paist-processing

- DualSPHysics code



Multi-GPU implementation

The memory requirements are stilllianitation for a single GPU, using
more than one GPU appears to be the best development to wentin
accelerating SPH simulations.

In order to allow different devices communicating with eauather, the
Message Passing Interfa@dPl) is used jointly with CUDA to implement
a multi-GPU version of SPH.

MPI presents the advantageof using different compute nodes hosting
multiple devices instead of only one as it happens with OpgenM



Multi-GPU implementation

The multi-GPU implementation of Valdez-Balderas et al.,120consists of
assigninglifferent portions of the physical systemto different GPUs

GPUI GPU2 ... GPUN
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Multi-GPU implementation

The multi-GPU implementation of Valdez-Balderas et al.,120consists of
assigninglifferent portions of the physical systemto different GPUs

After each computation stefdata needs to be transferred between devices
-the information of particles that migrate between GPUys¢ital sub-domains)
-0or particles that belong to shared spaces where data ioysssl/eral GPUSs.
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Multi-GPU implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

50

= 1CPU
40

30 4CPU

time (h)

20

—1GPU 45 min
10

200,000 400,000 600,000 800,000 1,000,000

Np

Computational runtimes with the Multi-CPU and GPU model



Multi-GPU implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

50
——1CPU
40 4CPU

—1GPU

30 ——2GPU

time (h)

e 3GPU

20
——A4GPU

10

0 -]
0 200,000 400,000 600,000 800,000 1,000,000

Np

Computational runtimes with the Multi-CPU and GPU model



Multi-GPU implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

50
1 CPU
40 4CPU
—1GPU

30 ——2GPU

time (h)

e 3GPU

20
——A4GPU

5M on CPU?

10

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

Np

Computational runtimes with the Multi-CPU and Multi -GPU model



Multi-GPU implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

1 CPU

4CPU

—1GPU

—2GPU

time (h)
N

e 3GPU

——A4GPU

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

Np

Computational runtimes with the Multi-CPU and Multi -GPU model



Multi-GPU implementation

GPU GTX 480 at 1.40GHz with 480 cores

—16Pu 7.71 h for 5M

—ocpu .73 h for 5M

time (h)
N

—3GPu 4.08 h for 5M

——4GPU 3,27 h for 5M

1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

Np

Computational runtimes with the Multi-GPU model



Multi-GPU implementation
GPU GTX 480 at 1.40GHz with 480 cores

e AGPUVS1GPU ==3GPUVS1GPU =2GPUvs1GPU

2.5X

2 // Without
o dynamic
g // load
N balancing

os —— 4 GPUs hosted in the same CPU —

4,000,000 5,000,000

2.5

0
0 1,000,000 2,000,000 3,000,000
Np

Speedup of using the Multi-GPU model



Multi-GPU implementation

4 GPUs hosted in the same CPU =————=p>
4 GPUs hosted in 2 CPUs (2 per node

3 GPUs hosted in 3 different CPUs

!
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GPU 2

GPU 3
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Multi-GPU implementation

GPU1 || GPU2 || GPU3 || GPU 4
[:ug‘ﬂ SEINENEE N E2 =2 E2 =2

| DRAM | (cPu]

NODE 1|
4 GPUs hosted in the same CPU

no cost in the inter-CPU communications




Multi-GPU implementation

GPU 1 GPU 2

IRAIY
NEWORY

SHAD SILAKET SAKID IHARDD
MIMORY MEMORY MEMORY

(e

Globel Memaory  Local Memory
DRAM

|

[ BRIDGE

MPI Communications

MPI Communications

IF GPUs hosted in different CPUs
With the CUDA v4.0, direct GPU-GPU communication will be popted.

But now, the memory transfer between different GPUs is edrout by
GPU-CPU
CPU-CPU using MPI
CPU-GPU communications



Multi-GPU implementation
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Multi-GPU implementation

GPU 1 GPU 2 GPU 3




Multi-GPU implementation

5 million particles

5 . . .
4 GPUs hosted in the same CPU

4l 4 GPUs hosted in 4 different CPUs
2 3|
¢ w
o)
o
N 27

1 |

0 1 2 3 4 5

Number of GPUs

cost in the inter-CPU communications



Multi-GPU implementation

7 million particles, 4 GPUs

Computing time %

GPU-CPU Data Preparation
Particle Interaction

inter-CPU cost increases with the number of particles

4 GPUs in 4 different CPUs



Multi-GPU implementation

CPU Intel® Core ™ |7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Speedup vs. 1 Speedup vs. 4

1M hours CPU CPU
1CPU 40.71 1.00
4CPU 9.09 4.48 1.00
1GPU 0.75 54.61 12.19
2GPU  0.57 71.63 15.99
3GPU 0.42 96.33 21.51
AGPU = 0.36 252

5,000 EUROS ,_

Speedup of using the Multi-GPU model
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Applications

RENEWABLE WAVE ENERGY RESEARCH

Numerical tool to design the devices and to describe their behaviour

WAVE DRAGON PELAMIS POWERBUOY



Applications

COASTAL PROTECTION

The passage of storms near coastal areas gives rise to dangerous waves on the shore line.

Dangerous waves in San Sebastidn coast, 2005 Storms effect in A Corufia coast, 2008



Applications

COASTAL PROTECTION

Natural disasters have occurred in the last years.

Hurricane Katrina in New Orleans, 2005 Tsunami in Japan, 2011



Applications

HARBOUR DESIGN

Real scenarios must be studied in detailed

Dikes overtopping Port Olimpic in Barcelona



Applications

Coastal protection
Harbour design

Industrial applications



Coastal protection
Simulating million particles in a few hours allows us to istigate:

- the damage due to extreme waves

- the flooded areas

- valuable information about overtopping
- risk maps in coastal areas




Coastal protection

Promenade-wave interaction
with 5,342,325 patrticles

domain 600m x 600m x 450m
dp=1.2m
h=1.8m

24 seconds of physical time
36,128 steps
take 3.4 hours on GTX480






Coastal protection




Coastal protection

Seawalk-wave interaction with
3,425,379 particles

domain 22m x 4m X 6m
dp=0.026m
h=0.039m

8 seconds of physical time
120,010 steps
take 7.5 hours on GTX480




1 9.600 s

Time




Coastal protection
We can measure the wave height

We can compute the forces exerted
onto the coastal structures




Coastal protection

Hi=4m; T,=25s




Coastal protection

441 .
WAVE #1
WAVE #2
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Coastal protection )
BENCH g : —3

Force exerted on Bench
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Coastal protection y =
LAMPPOST

Force exerted on Lamppost
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Coastal protection

BALUSTRADE
x10° Force exerted on Balustrade
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Coastal protection
Simulating million particles in a few hours allows us to istigate:

- the damage due to extreme waves

- the flooded areas

- valuable information about overtopping
- risk maps in coastal areas

Now we can simulate different H and T, of the incoming waves
and design the best scenerio for mitigation.




Coastal protection

Promenade-wave interaction
with 5,342,325 patrticles

domain 600m x 600m x 450m
dp=1.2m
h=1.8m

24 seconds of physical time
36,128 steps
take 3.4 hours on GTX480

5,342,325 particles close to the maximum memory space of
ONE GTX 480

If we need h<1.8m, we will need multi-GPUs






Industrial applications

GPUtme: 13.73 hours
Steps: 288,436
Particles: 290,592

GPUtime: 15.43 hours
Steps: 310,147
Particles: 300,249

Time: 10.60s




Industrial applications
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FILE FORMAT

Memory requirements and computational runtime for different output data formats.

150 files are saved for a physical time of 1.5 seconds.

25.0 |

MEMORY REQUIREMENTS
20.0 =——BINX -——ASCII

Size (Gb)

0 200000 400000 600000 800000 1000000
np

Binary format BINX consumes less memory, reduction of 80% compared to ASCII.

4.0
3.5 COMPUTATIONALRUNTIME
3.0 =—={NONE = = {BINX = = tASCII o

2.5
2.0

1.5

Time (hours)

1.0
0.5

0.0 :
0 200000 400000 - 600000 800000 1000000

Time dedicated to save the output data in binary format takes the 0.1% of the tota
simulation.



PRE-PROCESSING

In order to create a reebmplex geometryto reproduce an industrial problem the
first main issue is the resolution with which thHgexts are represented.

To obtain realistic results with SPH it is apprapeithat theénitial geometry is as
closeas possibl¢o a real industrial problem.

This drawback can be solved when several milliatiglas are used in the
simulation. Thus, a new pre-processing tool has beseloped to deal with more

complex geometriessenCasecode.



PRE-PROCESSING

3DS DXF DWG GIS H5SPART CSV MAX SHP CAD
PLY STL VITK

¥

PLY -> exportable using BLENDER
STL -> exportable using 3ADSTUDIO
VTK -> PARAVIEW

(files that contain vertices and polygons)

b

PLY, STL and VTK can be loaded by GenCase
The file is actually a set of triangles, each of these triangles are converted to particles




PRE-PROCESSING

Importing CAD files

PLY, STL and VTK can be loaded by GenCase
The file is actually a set of triangles, each of these triangles are converted to particles




PRE-PROCESSING

Importing 3DStudio objects

PLY, STL and VTK can be loaded by GenCase
The file is actually a set of triangles, each of these triangles are converted to particles




PRE-PROCESSING

® Untitled - Autodesk 3ds Max 8 - Stand-alone License
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PRE-PROCESSING
Importing 3DStudio objects
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PRE-PROCESSING

© mixer.max - Autodesk 3ds Max 8 - Stand-alone License
File Edit Tools Group Views Create Modifiers Character reactor Animation Graph Editors Rendering Customize MAXScript Help
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GPUtime: 63 hours
Steps: 1,210,743
Particles: 2,431,882

Mixer on GTX480

Time: 12.84%



PRE-PROCESSING KMZ from GOOGLE EARTH
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PRE-PROCESSING SKP from GOOGLE Sketchup 8




PRE-PROCESSING 3DS from Autodesk 3ds MAX 8

© Untitled - Autodesk 3ds Max 8 - Stand-alone License

File Edt Tools Group Yiews Create Modifiers Character reactor Animation Graph Editors Rendering Customize MAXScript Help
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PRE-PROCESSING VTK(polygons) from Paraview




PRE-PROCESSING

VTK(points) from Paraview

b3 LR

2

s .







POST-PROCESSING

305,252 particles




POST-PROCESSING

Mass: [0, 0.0004 ]
Isosurface for 0.0002




POST-PROCESSING

Mass: [ 0, 0.0004 ]
Isosurface for 0.0002




POST-PROCESSING

Import VTK objects




POST-PROCESSING

GTX-285

Time: 3.985s

GPUTime: 4.5 hours
Steps: 95,817
Particles: 610,508



POST-PROCESSING




POST-PROCESSING

y/

Corridor of the department at University of Vigo




POST-PROCESSING




POST-PROCESSING
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DualSPHysics code

“«0000000000

WWW.Sphysics.org DUALSPHUS

Log in / create account

SHySics

SPHYSICS Home Page

om Main Page

SPHysics SPHysics - SPH Free-surface Flow Solver

SPHYSICS Home Open-Source Smoothed Particle Hydrodynamics code
Developers
Downloads
SPHYSICS FAQ
SPHYSICS Forum
Visualization
Code History HHE

Future ) n
Developments Spl-inICS
Contributors
Recent changes
Training Courses
Help

blender for parallel
d i

- v v wwrewow

SPHVSICS

. Welcome to SPHysics

. Developers (photos) and Contributors

Code Features

. Downloads (serial, parallel, GPU, hybrid-coupling)
Documentation

SPHysics FAQ

SPHysics Forum

. Visualization: Images & Videos N
. Code History & Fixed Bugs (UPDATES) SDHyS;CS
. Future Developments & Releases

. Publications using the SPHysics code
. Training Courses

. How to reference SPHysics I 00:02
. Help and Info about SPHysics website

search

OV O NGO bsE WN -

-
(=

-
N

01:37  sb-ull]] - 23

e
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The SPHysics Code

SPHysics is a platform of Smoothed Particle Hydrodynamics (SPH) codes inspired by the formulation of Monaghan (1992) developed jointly by researchers at the Johns Hopkins University (U.S.A.), the
University of Vigo (Spain), the University of Manchester (U.K.) and the University of Rome La Sapienza (Italy). Developed over a number of years primarily to study free-surface flow phenomena where
Eulerian methods can be difficult to apply, such as waves, impact of dam-breaks on off-shore structures. We are excited to announce that there are 3 codes available: Code Features, while future
versions can be found under (Future Developments & Releases).

v2.2.1 Serial Code UPDATE RELEASED: January 2011
v2.0 Parallel Code RELEASED: January 2011
v1.0 DualSPHysics CPU-GPU Code RELEASED: January 2011

Download SPHysics




.....

..........

DualSPHysics code i, e

www.dual.sphysics.org DUALSPHgscs

DUALSPHYSICS DOCUMENTATION =

Filename Date Size DI/L
DualSPHysics_v1.0_GUIDE. pdf 2011-01-11 12:53 5.34 MB 1,037

DUALSPHYSICS PACKAGE ©

DUALS ACKAG
Filename Date Size D/L
DualSPHysics_v1.0_linux_32bit.zip 2011-01-11 12:41 14.68 MB 170
DualSPHysics_v1.0_linux_64bit.zip 2011-01-11 12:41 15.61 MB 241
DualSPHysics_v1.0_windows_32bit.zip 2011-01-11 12:41 12.44 MB 363
DualSPHysics_v1.0_windows_64bit.zip 2011-01-11 12:41 12.24 MB 312

More than 1,000 downloads of v1.0 during the first 90 days
Available now v1.2 with Multi-core implementation.



DualSPHysics code

www.dual.sphysics.orqg

DualSPHysics

RUN_DIRECTORY

(GenCase )

DualSPHysics + dll’s or lib’s
BoundaryVTK

PartVTK

MeasureTool
\DuaISPHysics _ptxasinfo

J\_

(CaseTempIate.xml

XML_examples

HELP_GenCase.out, HELP_DualSPHysics.out,

HELP_BoundaryVTK.out, HELP_PartVTK.out,

LHE LP_MeasureTool.out )
~

7
Motion.bat

Motion01.xml, Motion02.xml..., Motion08.xml

motion08mov_f3.out
\_ J

(CaseDambreak.bat
CaseDambreak_Def.xml
FastCaseDambreak.bat
FastCaseDambreak_Def.xml
\_ PointsVelocity.txt

CASEDAMBREAK

J/
N

("~ CaseWavemaker.bat
CaseWavemaker_Def,xml
FastCaseWavemaker.bat
FastCaseWavemaker_Def.xml
\_ PointsHeights.txt

CASEWAVEMAKER

rCaseReaIface.bat
CaseRealface_Def.xml
FastCaseRealface.bat
FastCaseRealface_Def.xml
face.vtk
\PointsPressure.txt

CASEREALFACE

J/
™~

(" CasePu mp.bat
CasePump_Def.xml
pump_fixed.vtk

\ pump_moving.vtk

CASEPUMP

I\

~20000000.
00000000000
[ 1 Las

4...'.......!.........

DUALSPHLJSICS

GenCase
Pre-processing

DualSPHysics
SPH solver

BoundaryVTK
PartVTK
Measutool

Post-processing




DualSPHysics code

HELP:
*ContainsCaseTemplate.xma XML example with all the different labels and formats that

can be used in the input XML file.
*HELP_NameCode.ouhcludes the HELP about the execution parameters of the different

codes.

MOTION :

«Contains the bat fileMotion.bat to perform the examples with the different type of
movements that can be described with DualSPHysics. Eight examplelsecearried out
(Motion01.xml..., Motion08.xml

*The text file motion0O8mov_f3.out describes the predefined motion used in the eighth

example.




DualSPHysics code

TESTCASES
1. Dambreak

Time: 0.20s

Time: 0.60 s




DualSPHysics code

TESTCASES
2. Wavemaker

Time: 0.00s Time: 2.00s

N

Time: 4.00s Time: 6.00s

Time: 8.00s Time: 10.00s



DualSPHysics code

TESTCASES
3. RealFace

Time: 0.05s Time: 0.45 s
- e iy q
AL
- L
b
P
S
Time: 0.90s

Time: 1.35s

Time: 1.80s Time: 2.25s




DualSPHysics code

EXECS:

«Contains all the executables codes.

d GenCase - pre-processing tool
0 DualSPHysics - SPH solver

0 BoundaryVTK - post-processing tool
d PartVTK - post-processing tool
0 MeasureTool - post-processing tool

*The text fileptxas_info.outs used to optimise the block size for the different CUDA
kernels on GPU executions, to maximise the occupancy.



DualSPHysics code

Original code (lines)

FormatFiles

FmtChange

IsoSurface

MeasureTool

W Shared

BoundaryVtk W Exclusive

PartVvtk

GenCase

DualSPHysics

0 5,000 10,000 15,000 20,000 25,000




DualSPHysics code

SOFTWARE:

Codes
- SPHysics fromwww.sphysics.org
- DualSPHysics fromwww.dual.sphysics.org

Pre-processing
- FreeCad

- Qgis

- EveryDWG

Post-processing
- Paraview from www.paraview.org
- Blender from www.blender.orqg

Compilers
- CUDA from www.nvidia.com
- GCC




DualSPHysics code

www.vimeo.com/dualsphysics

Chess game with Promenade-wave Floating ship with Wave-seawalk interaction Real car falling down in a Testing floating bodies with
DualSPHysics (SPH on GPU) interaction with DualSPHysics (SPH on GPU) with DualSPHysics (SPH on pool with DualSPHysics (SPH DualSPHysics (SPH on GPU)
DualSPHysics (SPH on GPU) GPU) on GPU)

Mixer machine mechanism  Sink with DualSPHysics (SPH 2D simulations with Pump mechanism with Wavetank with DualSPHysics New visualisation tools with
using DualSPHysics (SPH on on GPU) DualSPHysics (SPH on GPU) DualSPHysics (SPH on GPU) (SPH on GPU) DualSPHysics (SPH on GPU)
GPU) BETTER VISUALISATION
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Dam release using a KMZ Sloshing movement of a Sloshing movement of a Wave-seawalk interaction Fluid impact on a real face Wave-structure interaction
file from GOOGLE EARTH wave tank with concrete mixer with with DualSPHysics (SPH on with DualSPHysics (SPH on with DualSPHysics (SPH on
with DualSPHysics (SPH on DualSPHysics (SPH on GPU) DualSPHysics (SPH on GPU) GPU) LATERAL VIEW GPU) GPU)

GPU)



Conclusions

We have been able to simulate 45 million particles
on the nVidia TESLA S2050 with 448 cores and 3GB meory.
(9 million per GPU in 4 GPUSs)

This would be impossible to fit on a single GPU and
It was possible without the need of large, expeng\cluster of CPUSs.

Our new SPH models are capable to deal with
real-life engineering CFD problems.




Future developments

Multi-core
-Combination of OpenMP with MPI

GPU

-Include more SPH formulations expensive in time
-Double precision

-New strategies to optimize particle interaction
-New capabilities of CUDA 4.0

Multi-GPU
-Dynamic load balancing
-2D domain decomposition
-Use of Infiniband to decrease CPU-CPU communication
-Test pinned memory to decrease GPU-CPU communicaho
-CUDA 4.0 to fully investigate inter-GPU communicatons
-One thread per GPU limitation removed
-GPUDirect v2.0
-Unified virtual addressing UVA





