
A.J.C. Crespo, J.M. Dominguez, A. Barreiro and M. Gómez-Gesteira

Aplicación de nuevas tecnologías HPC 
a un código de simulación de fluidos



- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline



Numerical methods are  useful tools in engineering and science to solve complex problems.

The idea is simulating a physical problem with a numerical model.

Its main advantage is to simulate complex scenarios without building costly scale models, 

and provide data difficult or impossible to measure in a real model. 

Numerical methods

Definition and motivation
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Numerical methods are  useful tools in engineering and science to solve complex problems.

The idea is simulating a physical problem with a numerical model.

Its main advantage is to simulate complex scenarios without building costly scale models, 

and provide data difficult or impossible to measure in a real model. 



1) Correct implementation of the physical governing equations 

and the accuracy of the mathematical algorithms.                     IT IS UP TO YOU

2) Powerful hardware to execute the simulation.                            IT IS NOT UP TO US

Therefore, in order to obtain the best performance, the code must be optimized and 

parallelized as much as possible according to the available resources of hardware. 

Numerical methods
Aspects to build an accurate and fast numerical method



Central Processing Units (CPUs):

The current CPUs have multiple processing cores, making possible the distribution of the 

workload of a program among the different cores dividing the execution time. 

CPUs also present SIMD instructions (Single Instruction, Multiple Data) that allow an 

operation on multiple data simultaneously. 

The parallelization task on CPUs can be mainly performed by using MPI (Message Passing 

Interface) or OpenMP (Open Multi-Processing). 

Graphics Processing Units (GPUs):

Research can be also conducted with the new GPU technology for problems that previously 

required high performance computing (HPC). 

Recently the GPGPU programming (General Purpose on Graphics Processing Units) has 

experienced a strong growth in all fields of the scientific computing.

A DETAILED DESCRIPTION ABOUT GPU WILL BE SHOWN LATER

Numerical methods
Current hardware to execute our numerical methods



TOP SUPERCOMPUTERS IN THE WORLD

http://www.top500.org/list/2010/11/100

1º Tianhe-1A (China) 2.57 petaflops/s (consumption: 4040.00 KW) (with GPUs)
2º Jaguar (USA) 1.75 petaflops/s (consumption: 6950.60 KW) (CPUs)



TOP SUPERCOMPUTERS IN THE WORLD

http://www.top500.org/list/2011/06/100

1º K computer (Japan) 8.16 petaflops/s (consumption: 9898.56 KW) (SPARC64)
2º Tianhe-1A (China) 2.57 petaflops/s (consumption: 4040.00 KW) (with GPUs)
3º Jaguar (USA) 1.75 petaflops/s (consumption: 6950.60 KW) (CPUs)

The use of GPUco-processors is 
consolidated as a key component inHPC



GPUs are an accessible tool to accelerate SPH, 
all numerical methods in CFD and any computational method

http://www.nvidia.com



How long can be a simulation???

30,000 particles

1.5s of physical time

prototype dimensions 

simple geometries

Yeh and Petroff
experiment

Numerical methods



2004: over 2-3 hours 

2008: 1 hour

2010: 12 mins en single-core CPU

3 mins en multi-core CPU

17 segundos en GPU

How long can be a simulation???

Numerical methods



2004: over 2-3 hours 

2008: 1 hour

2010: 10 mins en single-core CPU

3 mins en multi-core CPU

17 segundos en GPU

How long can be a simulation???

2011???

Numerical methods



2011:

5,000,000 particles

24s of physical time

real dimensions 

complex geometries

3 hours on GPU

How long can be a simulation???

2004: over 2-3 hours 

2008: 1 hour

2010: 10 mins en single-core CPU

3 mins en multi-core CPU

17 segundos en GPU

Numerical methods
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The physical governing equations of a numerical method can be solved:

- with the help of a grid using an Eulerian description or 

- without it with a Lagrangian description. 

The meshfree methods make easier the simulation of problems:

- with large deformations

- advanced material

- complex geometries

- nonlinear material behavior

- discontinuities and singularities. 

Meshfree methods are used for solid mechanics as well as for fluid dynamics.

We will focus here on the meshfree particle method named SPH: 

Smoothed Particle Hydrodynamics

Different descriptions for numerical methods

SPH method



PHYSICAL GOVERNING EQUATIONS

LAGRANGIAN DESCRIPTION
(material description)

EULERIAN DESCRIPTION
(spatial description)

COMPUTATIONAL METHODS

GRID-BASED METHODS MESHFREE METHODS

MESHFREE PARTICLE METHODS
(particle represents a part of 

the continuum domain)

SMOOTHED PARTICLE HYDRODYNAMICS

SPH method



SPH method The fluid is treated as a set of particles.



SPH method

ri(t), vi (t), ρi(t), pi (t), mi (t)…

Position, velocity, mass, density, pressure 
of each particle is known.
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2h

SPH method NEIGHBOR

LIST

PARTICLE 

INTERACTION

Navier-Stokes equations approximated 
discretely by a summation



2h

2h

SPH method NEIGHBOR

LIST

PARTICLE 

INTERACTION

SYSTEM 

UPDATE

ri(t+dt), vi (t+dt), ρi(t+dt), pi (t+dt), mi (t+dt)…

2h



• Conceptually, an SPH code is an iterative process consisting of three main steps:

-neighbour list: 
particles only interact with surrounding particles located at a given distance so the 
domain is divided in cells of the kernel size to reduce the neighbour search to the 
adjacent cells;

-particle interaction: 
each particle only looks for neighbours at the adjacent cells, after verifying that the 
distance between particles lies within the support of the kernel, the conservation 
laws of continuum fluid dynamics are computed for the pair-wise interaction of 
particles;

-system update:
once the forces between neighbouring particles have been evaluated, all physical 
magnitudes of the particles are updated at the next time step.

NEIGHBOR

LIST

PARTICLE 

INTERACTION

SYSTEM 

UPDATE

SPH method



SPH method

Conceptual diagram of the implementation of a SPH code



The applicability of particle-based simulations is typically limited by two 
constraints: (i) simulation time, and (ii) system size

Thus, to obtain physically meaningful information from a simulation, one must be 
able to simulate a large-enough system for long-enough times. 

In the SPH method, applications such as the study of coastal processes and flooding 
hydrodynamics, have been limited until now by the maximum number of particles 
in order to perform simulations within reasonable times.

Big simulations for free-surface flows: 
40 million – EDF on a Blue Gene
120 million – EPFL on a Blue Gene
200 million – ECL 

SPH method: drawbacks



SPH method: drawbacks

One Blue Gene/L node board

Blue Gene is a computer architecture project to produce several supercomputers, designed

to reach operating speeds in the PFLOPS (petaFLOPS) range, and currently reaching

sustained speeds of nearly 500 TFLOPS (teraFLOPS): Blue Gene/L, Blue Gene/C, Blue

Gene/P, and Blue Gene/Q

In November 2007, the LLNL Blue Gene/L remained at the number one spot as the world's

fastest supercomputer: 478 TFLOPS

A Blue Gene/P supercomputer



Example: Dam break evolution during 1.5s
- using 30,000 particles takes 12 mins,

if no meaninful information
- using 300,000 particles takes 9.2 hours
on a single-core machine

Why SPH is so expensive in time??
- small∆t with weakly compressible SPH scheme

- high number of neighbours/interactions per particle

SPH runtimes

O(10-6-10-5) with 300,000 particles and more than 16,000 steps

250 neighbours for 300k In 2-D FVM only 4 neighbouring cells
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SPHysics is a Smoothed Particle Hydrodynamics code primarily to study free-surface flow 

phenomena. It has been jointly developed by Johns Hopkins University (U.S.A.), the 

University of Vigo (Spain) and the University of Manchester (United Kingdom). 

SPHysics project



http://sphysics.org

> 20,000 downloads !!!

SPHysics project

As result of this research, a first serial code was developed in FORTRAN 



The SPHysics group has focused its research mainly on wave propagation and interaction with 

coastal structures, in 2D and 3D.

SPHysics project
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VALIDATION : Dynamic boundary conditions 

Koshizuka and Oka, 1996
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VALIDATION : 2D Dam break behavior

Janosiet al., 2004
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SPHysics project

FORTRAN C++
OpenMP
CUDA

However, the SPHysics presents a high computational cost.

To perform simulations in a reasonable runtime with domains as large as the real systems,

we need to develop implementations that can exploit all the parallelism of the current

hardware systems.
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C++
OpenMP
CUDA

Proposals to accelerate SPH



Proposals to accelerate SPH

Multi-core 
OpenMP

GPU
CUDA

Multi-GPU
CUDA + MPI

How to accelerate your SPH code with less than ….

250 EUROS

2 Intel Xeon E5620 + 4 GTX480

GTX 480 at 1.40GHz 
with 480 cores

Intel® Core ™ i7 940 at 
2.93GHz with 4 cores

450 EUROS

5,000 EUROS
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Proposals to accelerate SPH

Multi-core 
OpenMP

GPU
CUDA

Multi-GPU
CUDA + MPI

How to accelerate your SPH code with less than ….

250 EUROS

2 Intel Xeon E5620 + 4 GTX480

GTX 480 at 1.40GHz 
with 480 cores

Intel® Core ™ i7 940 at 
2.93GHz with 4 cores

450 EUROS

5,000 EUROS

4.5x

55x

113x

55x not only means 

that a simulation of 55 mins can be performed in 1 min

but also large simulations can be performed 
in a reasonable computational runtime 

and different tests can be performed in a short time
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Programming languages: OpenMP

Implementation techniques and optimizations

Available hardware: Multi-core CPUs

Results and speedups

Multi-core implementation



Multi-core implementation

OpenMP is used to implement the multi-core SPHcode.

ADVANTAGES:

OpenMP is aportable and flexible programming model.

Its implementation is straightforward andno significant changesin comparison
to the single-core code are required.

The time dedicated to communication between different execution threads is
reduced since thesame shared memory is used.

DISADVANTAGES:

Using OpenMP on its own means that this parallelization and potential speedup
are limited to a small number of cores(i.e. the number of cores existing on the
compute node).



Programming languages: OpenMP

Implementation techniques and optimizations

Available hardware: Multi-core CPUs

Results and speedups

Multi-core implementation



Implementation techniques and optimizations

Multi-core implementation

Conceptual diagram of the 

CPU implementation of a SPH code



Parallelization of… ???????

In the case of a dam-break simulation:

Figure from Dominguez et al. 2010, IJNM

Force computation is the most expensive step of SPH in terms of computational 
runtime. Thus, this is a key process that must be implemented in parallel in order to 
improve the performance of the model.NL (CLL) PI SU NL (VL) PI SU

Force computation is the most expensive step of SPH in terms of computational runtime. 
This is a key process that must be implemented in parallel in order to accelerate SPH.

Cell linked list                                     Verlet list

Dominguez et al. “Neighbour lists in Smoothed Particle 
Hydrodynamics”. IJNMF, 2010.

Multi-core implementation



Implementation techniques and optimizations

Multi-core implementation

Most of the sequential tasks and operations that
involve a loop over all particles are performed
using the different cores of the same CPU.

Several parts of the SPH code can be
parallelized, but mainly, the force calculation
since it is the most expensive part of the
method.

Problems with this parallel programming;
- the concurrent access to the same memory

positions for read-write giving rise to
unexpected results.

- the load balancing to distribute equally the
work among threads.Conceptual diagram of the 

CPU implementation of a SPH code



Implementation techniques and optimizations

Multi-core implementation

Symmetry in particle interaction

SSE instructions

Dynamic load balancing



Implementation techniques and optimizations

Multi-core implementation

Symmetry in particle interaction:
The concurrent access to memory to write is avoided since each thread has
its own memory space where the forces of each particle are accumulated.

In 3D, each cell interacts with 14 cells (right) instead of 27 (left).



Implementation techniques and optimizations

Multi-core implementation

SSE instructions

Pseudocode in C++ of the force computation between particles of two cells without vectorial 

instructions (up) and grouping in blocks of 4 pair-wise of interaction using SSE instructions (down).



Implementation techniques and optimizations

Multi-core implementation

Dynamic load balancing

The dynamic scheduler of OpenMP is also employed 

distributing cells in blocks of 10 among different threads. 



Programming languages: OpenMP

Implementation techniques and optimizations

Available hardware: Multi-core CPUs

Results and speedups

Multi-core implementation



250 EUROS
Intel® Core ™ i7 940 

at 2.93GHz with 4 cores
with Hyper-threading

Multi-core implementation

2 x Intel Xeon X5500 
at 2.67 GHz with 2x4 cores 900 EUROS

Desktop

Workstation

Supercomputing
Center

8 x Intel dual-core 
Itanium Montvale 

at 1.6 GHz with 16 cores

Available hardware



Intel® Core ™ i7 940 
at 2.93GHz with 4 cores
with Hyper-threading

Multi-core implementation

2 x Intel Xeon X5500 
at 2.67 GHz with 2x4 cores

Desktop

Workstation

Supercomputing
Center

8 x Intel dual-core 
Itanium Montvale 

at 1.6 GHz with 16 cores

# threads

8 logical threads 
with Hyper-threading

8 threads

16 threads

Available hardware



Programming languages: OpenMP

Implementation techniques and optimizations

Available hardware: Multi-core CPUs

Results and speedups

Multi-core implementation



Computational runtimes with the Multi-core CPU model

Multi-core implementation
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Computational runtimes with the Multi-core CPU model

Multi-core implementation
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Computational runtimes with the Multi-core CPU model

Multi-core implementation
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Computational runtimes with the Multi-core CPU model

Multi-core implementation
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Multi-core implementation

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e 

(h
)

Np

i7-th1

i7-th8



1M hours
Speedup vs. 1 

CPU
Speedup vs. 4 

CPU

1CPU 40.71 1.00

4CPU 9.09 4.48 1.00

Speedup of using the Multi-core CPU model

250 EUROS

Multi-core implementation

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores



CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores

Computational runtimes with the Multi-core CPU model
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Introduction to GPUs and CUDA

Implementation techniques and optimizations

Available hardware: GPUs

Results and speedups

GPU implementation



•GPUs are a new technology imported from the computergames industry.t

•GPUs are designed totreat large data flows.

•Due to the development of the video games market and multimedia, their
computing powerhas increased much faster than CPUs.

•GPUs are massivelymultithreaded manycore chips. For example, with a
GTX480 card a maximum of 23,040 threads can be in execution simultaneously.

•GPUs appear to be anaccessible alternative to accelerate SPH.

•GPUs arecheap and ease-of-maintenancein comparison with large cluster
machines.

•The GPU parallelisation technique uses theCUDA developed by NVIDIA.

•HOWEVER, AN EFFICIENT AND FULL USE OF THE CAPABILITIES OF
THE GPU IS NOT STRAIGHTFORWARD.

Graphics Processing Unit

Videogame FIFA 12



Graphics Processing Unit

•GPUs are a new technology imported from the computergames industry.t

•GPUs are designed totreat large data flows.
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THE GPU IS NOT STRAIGHTFORWARD.



CPUs double their capacity each 18 months (x1.5 anual, x60 decade)

GPUs double their capacity each 12 months (x2.0 anual, x1000 decade)



Graphics Processing Unit

•GPUs are a new technology imported from the computergames industry.t

•GPUs are designed totreat large data flows.

•Due to the development of the video games market and multimedia, their
computing powerhas increased much faster than CPUs.

•GPUs are massivelymultithreaded manycore chips. For example, with a
GTX480 card a maximum of 23,040 threads can be in execution simultaneously.

•GPUs appear to be anaccessible alternative to accelerate SPHsince they are
cheapandease-of-maintenancein comparison with large cluster machines.

•The GPU parallelisation technique uses theCUDA developed by NVIDIA.

•HOWEVER, AN EFFICIENT AND FULL USE OF THE CAPABILITIES OF
THE GPU IS NOT STRAIGHTFORWARD.



General ideas about CUDA:

Kernel: code to be executed on GPU

Thread: execution task

Block: group of threads that executes the kernel

Grid: array of blocks that executes the same kernel

Warp: active blocks assigned to a multiprocessor 

are executed in groups of 32 tasks-threads

Graphics Processing Unit



Memory Architecture

Thread: private local memory

Block: shared memory 
visible to all threads of the block

All threads have access to the 
same global memory

2 read-only memory spaces:
the constant memory
and texture memory espaces

Graphics Processing Unit



Introduction to GPUs and CUDA

Implementation techniques and optimizations

Available hardware: GPUs

Results and speedups

GPU implementation



• Conceptually, an SPH code is an iterative process consisting of three main steps:

-neighbour list: 
particles only interact with surrounding particles located at a given distance so the 
domain is divided in cells of the kernel size to reduce the neighbour search to the 
adjacent cells;

-particle interaction: 
each particle only looks for neighbours at the adjacent cells, after verifying that the 
distance between particles lies within the support of the kernel, the conservation 
laws of continuum fluid dynamics are computed for the pair-wise interaction of 
particles;

-system update:
once the forces between neighbouring particles have been evaluated, all physical 
magnitudes of the particles are updated at the next time step.

NEIGHBOR

LIST

PARTICLE 

INTERACTION

SYSTEM 

UPDATE

GPU implementation



GPU implementation of… ???????

In the case of a dam-break simulation:

Figure from Dominguez et al. 2010, IJNM

Force computation is the most expensive step of SPH in terms of computational 
runtime. Thus, this is a key process that must be implemented in parallel in order to 
improve the performance of the model.

GPU implementation

NL (CLL) PI SU NL (VL) PI SU

Force computation is the most expensive step of SPH in terms of computational runtime. 
This is a key process that must be implemented in parallel in order to accelerate SPH.

Cell linked list                                     Verlet list

Dominguez et al. “Neighbour lists in Smoothed Particle 
Hydrodynamics”. IJNMF, 2010.



GPU implementation

Conceptual diagram of the 

CPU implementation of a SPH code

Conceptual diagram of the 

GPU implementation of a SPH code



CPU / C++ GPU / CUDA

i → j = 2
i → j = 1

aij=3i → j = 3

ai = ai1 + ai2 + ai3 + …

GPU implementation
GPU implementation of PARTICLE INTERACTION:



CPU / C++ GPU / CUDA

i → j = 1 aij=1

ai = ai1 + …

GPU implementation
GPU implementation of PARTICLE INTERACTION:



GPU / CUDA
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GPU / CUDA
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Particle interaction can be implemented on GPU considering 
one execution thread to compute, for only one particle, 

the force resulting from the interaction with all its neighbours.

GPU implementation



GPU implementation

Conceptual diagram of the 

partial GPU implementation of a SPH code

Conceptual diagram of the 

full GPU implementation of a SPH code



GPU implementation of NEIGHBOUR LIST:

Cell-linked list, divided in different operations: 
(i) domain division into square cells of side 2h, (or the size of the kernel domain) 
(ii) determining the cell to which each particle belongs,
(iii) reordering the particles according to the cells (radixsort algorithm by CUDA)
(iv) ordering all arrays with data associated to each particle and, finally
(v) generating an array with the position index of the first particle of each cell.

GPU implementation
Dominguez et al. “Neighbour lists in Smoothed Particle 

Hydrodynamics”. IJNMF, 2010.



GPU implementation of SYSTEM UPDATE:

This process consists on tasks that can be easily parallelized as updating the values of 
all particle data for the next time step.

We need:

- the current particle data

- acceleration and density derivative

- computing the new value of the time step according to Monaghan and Kos (1999)

- the maximum and minimum values of different variables (force, velocity and 

sound speed) are calculated using the reduction algorithm by CUDA. 

GPU implementation



Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers  

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA 

DOCUMENTATION

RECIPES TO COOK SPH-GPU

GPU implementation



PROBLEMS TO BE SOLVED:

-Memory usage

-Divergence

-Coalescence

-Occupancy

Graphics Processing Unit



Memory Architecture

Thread: private local memory

Block: shared memory 
visible to all threads of the block

All threads have access to the 
same global memory

2 read-only memory spaces:
the constant memory
and texture memory espaces

Graphics Processing Unit

Memory usage



Divergence

Graphics Processing Unit

GPU threads are grouped in sets of 32 namedwarps(CUDA language).

When a task is being executed over a warp, the32 threads carry out this task
simultaneously.

However,due to conditional flow instructions in the code, not all the threads will
perform the same operation, sothe different tasks are executed in a sequential
way giving rise to a high loss of efficiency.

This divergence problem appears duringparticle interaction since each thread has
to evaluate what potential neighbors are real neighbors of the particle before
computing the force



Divergence

Graphics Processing Unit

16 threads executing the
same task over 16 values

each colour represents a task

NO DIVERGENT WARPS

16 threads executed 
simultaneously



Graphics Processing Unit

16 threads executing
three different tasks (IF)

over 16 values

execution of the 16 threads
will take the runtime needed to carry out 

the three tasks sequentially

+ +

Divergence

DIVERGENT WARPS !!!

each colour represents a task



Coalescence

Graphics Processing Unit

The globalmemory of the GPU is accessed in blocks of 32, 64 or 128 bytes,
so the number of accesses to satisfy a warp depends on how grouped data are.

In particle interaction ,
although particle data are reordered according to the cellsthey belong to, a
regular memory access is not possible since each particle has different neighbors
and therefore each thread will access to different memory positions, which
may, eventually, be far from the rest of the positions in the warp.



Coalescence

Graphics Processing Unit

16 threads executing 
over 16 values

16 values stored in
16 consecutive memory positions

COALESCED ACCESS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Only 1 access to 
memory is required



Coalescence

Graphics Processing Unit

16 threads executing 
over 16 values

16 values stored in
different memory positions

NON COALESCED ACCESS

1
2
3
4
5
6

545
546
547
548
1256
1257
4513
4514
4515
4516

4 memory accesses 
are required



Occupancy

Graphics Processing Unit

Occupancy isthe ratio of active warps to the maximum number of warps
supported on a multiprocessorof the GPU or Streaming Multiprocessor (SM).

Since the access to the GPU global memory is very irregular during the particle
interaction, it isessential to have the largest number of active warpsin order
to hide the latencies of memory access and maintain the hardware as busy as
possible.

The number of active warps depends onthe registers required for the CUDA
kernel, the GPU specifications and the number of threads perblock.



Technical specifications 1.0 1.1 1.2 1.3 2.x 

Max. of threads per block 512 1024 

Max. of resident blocks per SM 8 

Max. of resident warps per SM 24 32 48 

Max. of resident threads per SM 768 1024 1536 

Max. of 32-bit registers per SM 8 K 16 K 32 K 

Occupancy

Graphics Processing Unit



Occupancy

Graphics Processing Unit



Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers  

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA 

DOCUMENTATION

RECIPES TO COOK SPH-GPU

GPU implementation



GPU implementation

Conceptual diagram of the 

partial GPU implementation of a SPH code

Conceptual diagram of the 

full GPU implementation of a SPH code

The most efficient option is to keep all data in the memory of the GPU 
where the three main processes of SPH are executed in parallel.



Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers  

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA 

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

GPU implementation



GPU implementation

CPU-GPU COMMUNICATION

- Initially, data were allocated on CPU, 
so there is a first memory transfer 

(from CPU to GPU)

- All particle information remains  
on the GPU memory. 

- When saving data is required, 
only the desired data is transfer 
from GPU to CPU.

Conceptual diagram of the 

full GPU implementation of a SPH code



Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers  

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA 

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

GPU implementation

Basic strategies for Performance Optimization



GPU implementation

The use of the constant memory and registers is maximized



Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers  

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA 

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

IMPROVED

GPU implementation



GPU implementation

- code divergence can appear since when the possible neighbours of a particle are 
evaluated, some of them are real neighbours and the force computation is carried out 
while other particles are not real neighbours and no computation is performed. 



16 threads executing
two different tasks

over 16 values

execution of the 16 threads
will take the runtime needed to carry 

out the two tasks sequentially

+

Divergence
DIVERGENT WARPS !!!

GPU implementation

Runtime of 
computing force

Total runtime = Runtime of 
no  computation

+

real neighbour



GPU implementation
- code divergence can appear since when the possible neighbours of a particle are 

evaluated, some of them are real neighbours and the force computation is carried out 
while other particles are not real neighbours and no computation is performed. 

- using cells of size h instead of 2h, we increase the number of half-warps with only one 
execution task (all real neighbours or none), thus we reduce the divergence

h



Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers  

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA 

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

IMPROVED

IMPROVED

GPU implementation



GPU implementation

- the access to the global memory of the device is irregular because there is no way to 
organise the data to get a coalescent access for all the particles. 



GPU implementation

Positions in 
the memory of 

the device

1027
3655
2769

- the access to the global memory of the device is irregular because there is no way to 
organise the data to get a coalescent access for all the particles. 



Coalescence

16 threads executing 
over 16 values

16 values stored in
different memory positions

NON COALESCED ACCESS

4 memory accesses 
are required
instead of 1

GPU implementation

1
2
3
4
5
6

545
546
547
548
1256
1257
4513
4514
4515
4516



GPU implementation

6215-6285

3555-3595

1025-1075

Positions in 
the memory of 

the device

- the access to the global memory of the device is irregular because there is no way to 
organise the data to get a coalescent access for all the particles. 

- reordering particles, more neighbours are stored in consecutive memory positions



Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers  

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA 

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

IMPROVED

IMPROVED

IMPROVED

IMPROVED

GPU implementation



GPU implementation
We use a file with the number of registers we can use for all the execution kernels 
depending on the compute capability of the card.

Starting from this value we can adjust the block size depending on the GPU card to 
obtain the maximum occupancy.



Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers  

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA 

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

IMPROVED

IMPROVED

IMPROVED

IMPROVED

DONE

GPU implementation



Introduction to GPUs and CUDA

Implementation techniques and optimizations

Available hardware: GPUs

Results and speedups

GPU implementation



Available hardwareGPU implementation

GPU # of cores

Processor

clock

(GHz)

Memory

(GB)

Power

usage

(watts)

Heat (ºC) Price (€)

M1060 240 1.36 4 188

good

cooling

system

for server

1200*

GTX 285 240 1.48 1 204 105 330*

GTX 480 480 1.40 1.5 384 94 450*

GTX 590 1024 2x1.54 3 496 74 650

* year 2009



Introduction to GPUs and CUDA

Implementation techniques and optimizations

Available hardware: GPUs

Results and speedups

GPU implementation



CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores

Computational runtimes with the Multi-CPU model
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CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Computational runtimes with the Multi-CPU and GPU model
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Speedup of using the GPU model

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

55x

GPU implementation
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The FERMI card is55 times more efficient than the best CPU single-core code.

The achievedperformance can be compared to the big cluster machines.

Following Maruzewski et al. 2010:
100 cores with efficiency of 60% of the supercomputer IBMBlue Gene/L
to equal the speedup achieved by only a Fermi Card

1 GTX480= 100 cores of BlueGene

GPU implementation



The FERMI card is55 times more efficient than the best CPU single-core code.

The achievedperformance can be compared to the big cluster machines.

Following Maruzewski et al. 2010:
100 cores with efficiency of 60% of the supercomputer IBMBlue Gene/L
to equal the speedup achieved by only a Fermi Card

1 GTX480= 450 EUROS

GPU implementation



1M hours
Speedup vs. 1 

CPU
Speedup vs. 4 

CPU

1CPU 40.71 1.00

4CPU 9.09 4.48 1.00

1GPU 0.75 54.61 12.19

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Speedup of using the GPU model

450 EUROS

GPU implementation



- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline



Multi-GPU implementation

The memory requirements are still alimitation for a single GPU, using
more than one GPU appears to be the best development to continue
accelerating SPH simulations.

In order to allow different devices communicating with eachother, the
Message Passing Interface(MPI) is used jointly with CUDA to implement
a multi-GPU version of SPH.

MPI presents the advantageof using different compute nodes hosting
multiple devices instead of only one as it happens with OpenMP.



The multi-GPU implementation of Valdez-Balderas et al., 2011 consists of
assigningdifferent portions of the physical systemto different GPUs

After each computation step,data needs to be transferred between devices;
-the information of particles that migrate between GPUs (physical sub-domains)
-or particles that belong to shared spaces where data is usedby several GPUs.

With the CUDA v4.0, direct GPU-GPU
communication will be supported.

But now, the memory transfer between
different GPUs is carried out by
-GPU-CPU,
-CPU-CPU and
-CPU-GPU communications

Multi-GPU implementation



The multi-GPU implementation of Valdez-Balderas et al., 2011 consists of
assigningdifferent portions of the physical systemto different GPUs

After each computation step,data needs to be transferred between devices;
-the information of particles that migrate between GPUs (physical sub-domains)
-or particles that belong to shared spaces where data is usedby several GPUs.

With the CUDA v4.0, direct GPU-GPU
communication will be supported.

But now, the memory transfer between
different GPUs is carried out by
-GPU-CPU,
-CPU-CPU and
-CPU-GPU communications

Multi-GPU implementation



CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Computational runtimes with the Multi-CPU and GPU model
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Multi-GPU implementation

Computational runtimes with the Multi-CPU and Multi -GPU model



Multi-GPU implementation

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Computational runtimes with the Multi-CPU and Multi -GPU model
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GPU GTX 480 at 1.40GHz with 480 cores

Computational runtimes with the Multi-GPU model

7.71 h for 5M

5.73 h for 5M

4.08 h for 5M

3.27 h for 5M
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Multi-GPU implementation

4 GPUs hosted in the same CPU

GPU GTX 480 at 1.40GHz with 480 cores

Speedup of using the Multi-GPU model

2.5x
Without 
dynamic 

load 
balancing



Multi-GPU implementation

4 GPUs hosted in the same CPU

4 GPUs hosted in 2 CPUs (2 per node)

3 GPUs hosted in 3 different CPUs



4 GPUs hosted in the same CPU

Multi-GPU implementation

no cost in the inter-CPU communications



IF GPUs hosted in different CPUs

Multi-GPU implementation

With the CUDA v4.0, direct GPU-GPU communication will be supported.

But now, the memory transfer between different GPUs is carried out by
GPU-CPU
CPU-CPU using MPI
CPU-GPU communications



Multi-GPU implementation

4 GPUs hosted in the same CPU 4 GPUs hosted in 4 different CPUs



Multi-GPU implementation



Multi-GPU implementation

4 GPUs hosted in the same CPU

4 GPUs hosted in 4 different CPUs

cost in the inter-CPU communications



Multi-GPU implementation

4 GPUs in 4 different CPUs

inter-CPU cost increases with the number of particles



1M hours
Speedup vs. 1 

CPU
Speedup vs. 4 

CPU

1CPU 40.71 1.00

4CPU 9.09 4.48 1.00

1GPU 0.75 54.61 12.19

2GPU 0.57 71.63 15.99

3GPU 0.42 96.33 21.51

4GPU 0.36 113.22 25.28

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Speedup of using the Multi-GPU model

Multi-GPU implementation

5,000 EUROS



- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline



RENEWABLE WAVE ENERGY RESEARCH 

WAVE DRAGON PELAMIS POWERBUOY

Numerical tool to design the devices and to describe their behaviour

Applications



COASTAL PROTECTION

The passage of storms near coastal areas gives rise to dangerous waves on the shore line.

Dangerous waves in San Sebastián coast, 2005 Storms effect in A Coruña coast,  2008

Applications



COASTAL PROTECTION

Natural disasters have occurred in the last years. 

Hurricane Katrina in New Orleans, 2005 Tsunami in Japan, 2011

Applications



HARBOUR DESIGN

Port Olimpic in BarcelonaDikes overtopping

Real scenarios must be studied in detailed

Applications



Applications

Coastal protection

Harbour design

Industrial applications



Simulating million particles in a few hours allows us to investigate:

- the damage due to extreme waves
- the flooded areas
- valuable information about overtopping
- risk maps in coastal areas

Coastal protection



Promenade-wave interaction 
with 5,342,325 particles

domain 600m x 600m x 450m  
dp= 1.2m
h=1.8m

24 seconds of physical time
36,128 steps

take 3.4 hours on GTX480

Coastal protection





Coastal protection



Seawalk-wave interaction with 
3,425,379 particles

domain 22m x 4m x 6m  
dp= 0.026m
h=0.039m 

8 seconds of physical time 
120,010 steps

take 7.5 hours on GTX480

Coastal protection





We can measure the wave height

We can compute the forces exerted 
onto the coastal structures

Coastal protection



Hs = 4 m ;  Tp = 2 s 

Coastal protection



Coastal protection



BENCH

Coastal protection



LAMPPOST

Coastal protection



BALUSTRADE

Coastal protection



Simulating million particles in a few hours allows us to investigate:

- the damage due to extreme waves
- the flooded areas
- valuable information about overtopping
- risk maps in coastal areas

Now we can simulate different Hs and Tp of the incoming waves
and design the best scenerio for mitigation.

Coastal protection



Promenade-wave interaction 
with 5,342,325 particles

domain 600m x 600m x 450m  
dp= 1.2m
h=1.8m

24 seconds of physical time 
36,128 steps

take 3.4 hours on GTX480

5,342,325 particles close to the maximum memory space of 
ONE GTX 480

If we need h<1.8m, we will need multi-GPUs

Coastal protection





Industrial applications



Industrial applications



- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline



150 files are saved for a physical time of 1.5 seconds.

Binary format BINX consumes less memory, reduction of 80% compared to ASCII.

Time dedicated to save the output data in binary format takes the 0.1% of the total
simulation.

FILE FORMAT

Memory requirements and computational runtime for different output data formats.



In order to create a real complex geometry to reproduce an industrial problem the 
first main issue is the resolution with which the objects are represented. 

To obtain realistic results with SPH it is appropriate that the initial geometry is as 
closeas possible to a real industrial problem. 

This drawback can be solved when several million particles are used in the 
simulation. Thus, a new pre-processing tool has been developed to deal with more 
complex geometries: GenCase code.

PRE-PROCESSING



PLY, STL and VTK can be loaded by GenCase
The file is actually a set of triangles, each of these triangles are converted to particles

3DS    DXF    DWG    GIS    H5PART    CSV    MAX    SHP    CAD   
PLY   STL   VTK

PLY -> exportable using BLENDER
STL -> exportable using 3DSTUDIO
VTK -> PARAVIEW

(files that contain vertices and polygons)

PRE-PROCESSING



PLY, STL and VTK can be loaded by GenCase
The file is actually a set of triangles, each of these triangles are converted to particles

Importing CAD files

PRE-PROCESSING



PLY, STL and VTK can be loaded by GenCase
The file is actually a set of triangles, each of these triangles are converted to particles

Importing 3DStudio objects

PRE-PROCESSING



PRE-PROCESSING



Importing 3DStudio objects

PRE-PROCESSING



PRE-PROCESSING





KMZ from GOOGLE EARTHPRE-PROCESSING



SKP from GOOGLE Sketchup 8PRE-PROCESSING



3DS from Autodesk 3ds MAX 8PRE-PROCESSING



VTK(polygons) from ParaviewPRE-PROCESSING



VTK(points) from ParaviewPRE-PROCESSING





POST-PROCESSING

305,252 particles



POST-PROCESSING

Mass: [ 0 , 0.0004 ]

Isosurface for 0.0002



POST-PROCESSING

Mass: [ 0 , 0.0004 ]

Isosurface for 0.0002



POST-PROCESSING

Import VTK objects



POST-PROCESSING



POST-PROCESSING



Corridor of the department at University of Vigo

POST-PROCESSING



POST-PROCESSING



POST-PROCESSING



- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline



DualSPHysics code

www.sphysics.org



www.dual.sphysics.org

More than 1,000 downloads of v1.0 during the first 90 days
Available now v1.2 with Multi-core implementation.

DualSPHysics code



www.dual.sphysics.org

GenCase
Pre-processing

DualSPHysics
SPH solver

BoundaryVTK
PartVTK
Measutool

Post-processing

DualSPHysics code



HELP :
•ContainsCaseTemplate.xml, a XML example with all the different labels and formats that
can be used in the input XML file.
•HELP_NameCode.outincludes the HELP about the execution parameters of the different
codes.

MOTION :
•Contains the bat fileMotion.bat to perform the examples with the different type of
movements that can be described with DualSPHysics. Eight examples canbe carried out
(Motion01.xml…, Motion08.xml).
•The text file motion08mov_f3.out describes the predefined motion used in the eighth
example.

DualSPHysics code



TESTCASES
1. Dambreak

DualSPHysics code



TESTCASES
2.   Wavemaker

DualSPHysics code



TESTCASES
3.   RealFace

DualSPHysics code



EXECS:

•Contains all the executables codes.
� GenCase - pre-processing tool
� DualSPHysics - SPH solver
� BoundaryVTK - post-processing tool
� PartVTK - post-processing tool
� MeasureTool - post-processing tool

•The text fileptxas_info.outis used to optimise the block size for the different CUDA
kernels on GPU executions, to maximise the occupancy.

DualSPHysics code



DualSPHysics code



SOFTWARE:

Codes
- SPHysics fromwww.sphysics.org
- DualSPHysics fromwww.dual.sphysics.org

Pre-processing
- FreeCad
- Qgis
- EveryDWG

Post-processing
- Paraview from www.paraview.org
- Blender from www.blender.org

Compilers
- CUDA from www.nvidia.com
- GCC

DualSPHysics code



www.vimeo.com/dualsphysics

DualSPHysics code



Conclusions

We have been able to simulate 45 million particles
on the nVidia TESLA S2050 with 448 cores and 3GB memory.

(9 million per GPU in 4 GPUs)

This would be impossible to fit on a single GPU and 
it was possible without the need of large, expensive cluster of CPUs.

Our new SPH models are capable to deal with 
real-life engineering CFD problems.



Multi-core
-Combination of OpenMP with MPI

GPU
-Include more SPH formulations expensive in time
-Double precision
-New strategies to optimize particle interaction
-New capabilities of CUDA 4.0

Multi-GPU
-Dynamic load balancing
-2D domain decomposition
-Use of Infiniband to decrease CPU-CPU communication
-Test pinned memory to decrease GPU-CPU communication
-CUDA 4.0 to fully investigate inter-GPU communications

-One thread per GPU limitation removed

-GPUDirect v2.0

-Unified virtual addressing UVA

Future developments




