
A.J.C. Crespo, J.M. Dominguez, A. Barreiro and M. Gómez-Gesteira

Aplicación de nuevas tecnologías HPC
a un código de simulación de fluidos

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

Numerical methods are useful tools in engineering and science to solve complex problems.

The idea is simulating a physical problem with a numerical model.

Its main advantage is to simulate complex scenarios without building costly scale models,

and provide data difficult or impossible to measure in a real model.

Numerical methods

Definition and motivation

Numerical methods

Definition and motivation

Numerical methods are useful tools in engineering and science to solve complex problems.

The idea is simulating a physical problem with a numerical model.

Its main advantage is to simulate complex scenarios without building costly scale models,

and provide data difficult or impossible to measure in a real model.

1) Correct implementation of the physical governing equations

and the accuracy of the mathematical algorithms. IT IS UP TO YOU

2) Powerful hardware to execute the simulation. IT IS NOT UP TO US

Therefore, in order to obtain the best performance, the code must be optimized and

parallelized as much as possible according to the available resources of hardware.

Numerical methods
Aspects to build an accurate and fast numerical method

Central Processing Units (CPUs):

The current CPUs have multiple processing cores, making possible the distribution of the

workload of a program among the different cores dividing the execution time.

CPUs also present SIMD instructions (Single Instruction, Multiple Data) that allow an

operation on multiple data simultaneously.

The parallelization task on CPUs can be mainly performed by using MPI (Message Passing

Interface) or OpenMP (Open Multi-Processing).

Graphics Processing Units (GPUs):

Research can be also conducted with the new GPU technology for problems that previously

required high performance computing (HPC).

Recently the GPGPU programming (General Purpose on Graphics Processing Units) has

experienced a strong growth in all fields of the scientific computing.

A DETAILED DESCRIPTION ABOUT GPU WILL BE SHOWN LATER

Numerical methods
Current hardware to execute our numerical methods

TOP SUPERCOMPUTERS IN THE WORLD

http://www.top500.org/list/2010/11/100

1º Tianhe-1A (China) 2.57 petaflops/s (consumption: 4040.00 KW) (with GPUs)
2º Jaguar (USA) 1.75 petaflops/s (consumption: 6950.60 KW) (CPUs)

TOP SUPERCOMPUTERS IN THE WORLD

http://www.top500.org/list/2011/06/100

1º K computer (Japan) 8.16 petaflops/s (consumption: 9898.56 KW) (SPARC64)
2º Tianhe-1A (China) 2.57 petaflops/s (consumption: 4040.00 KW) (with GPUs)
3º Jaguar (USA) 1.75 petaflops/s (consumption: 6950.60 KW) (CPUs)

The use of GPUco-processors is
consolidated as a key component inHPC

GPUs are an accessible tool to accelerate SPH,
all numerical methods in CFD and any computational method

http://www.nvidia.com

How long can be a simulation???

30,000 particles

1.5s of physical time

prototype dimensions

simple geometries

Yeh and Petroff
experiment

Numerical methods

2004: over 2-3 hours

2008: 1 hour

2010: 12 mins en single-core CPU

3 mins en multi-core CPU

17 segundos en GPU

How long can be a simulation???

Numerical methods

2004: over 2-3 hours

2008: 1 hour

2010: 10 mins en single-core CPU

3 mins en multi-core CPU

17 segundos en GPU

How long can be a simulation???

2011???

Numerical methods

2011:

5,000,000 particles

24s of physical time

real dimensions

complex geometries

3 hours on GPU

How long can be a simulation???

2004: over 2-3 hours

2008: 1 hour

2010: 10 mins en single-core CPU

3 mins en multi-core CPU

17 segundos en GPU

Numerical methods

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

The physical governing equations of a numerical method can be solved:

- with the help of a grid using an Eulerian description or

- without it with a Lagrangian description.

The meshfree methods make easier the simulation of problems:

- with large deformations

- advanced material

- complex geometries

- nonlinear material behavior

- discontinuities and singularities.

Meshfree methods are used for solid mechanics as well as for fluid dynamics.

We will focus here on the meshfree particle method named SPH:

Smoothed Particle Hydrodynamics

Different descriptions for numerical methods

SPH method

PHYSICAL GOVERNING EQUATIONS

LAGRANGIAN DESCRIPTION
(material description)

EULERIAN DESCRIPTION
(spatial description)

COMPUTATIONAL METHODS

GRID-BASED METHODS MESHFREE METHODS

MESHFREE PARTICLE METHODS
(particle represents a part of

the continuum domain)

SMOOTHED PARTICLE HYDRODYNAMICS

SPH method

SPH method The fluid is treated as a set of particles.

SPH method

ri(t), vi (t), ρi(t), pi (t), mi (t)…

Position, velocity, mass, density, pressure
of each particle is known.

2h

SPH method NEIGHBOR

LIST

2h

2h

SPH method NEIGHBOR

LIST

2h

2h

SPH method NEIGHBOR

LIST

PARTICLE

INTERACTION

Navier-Stokes equations approximated
discretely by a summation

2h

2h

SPH method NEIGHBOR

LIST

PARTICLE

INTERACTION

SYSTEM

UPDATE

ri(t+dt), vi (t+dt), ρi(t+dt), pi (t+dt), mi (t+dt)…

2h

• Conceptually, an SPH code is an iterative process consisting of three main steps:

-neighbour list:
particles only interact with surrounding particles located at a given distance so the
domain is divided in cells of the kernel size to reduce the neighbour search to the
adjacent cells;

-particle interaction:
each particle only looks for neighbours at the adjacent cells, after verifying that the
distance between particles lies within the support of the kernel, the conservation
laws of continuum fluid dynamics are computed for the pair-wise interaction of
particles;

-system update:
once the forces between neighbouring particles have been evaluated, all physical
magnitudes of the particles are updated at the next time step.

NEIGHBOR

LIST

PARTICLE

INTERACTION

SYSTEM

UPDATE

SPH method

SPH method

Conceptual diagram of the implementation of a SPH code

The applicability of particle-based simulations is typically limited by two
constraints: (i) simulation time, and (ii) system size

Thus, to obtain physically meaningful information from a simulation, one must be
able to simulate a large-enough system for long-enough times.

In the SPH method, applications such as the study of coastal processes and flooding
hydrodynamics, have been limited until now by the maximum number of particles
in order to perform simulations within reasonable times.

Big simulations for free-surface flows:
40 million – EDF on a Blue Gene
120 million – EPFL on a Blue Gene
200 million – ECL

SPH method: drawbacks

SPH method: drawbacks

One Blue Gene/L node board

Blue Gene is a computer architecture project to produce several supercomputers, designed

to reach operating speeds in the PFLOPS (petaFLOPS) range, and currently reaching

sustained speeds of nearly 500 TFLOPS (teraFLOPS): Blue Gene/L, Blue Gene/C, Blue

Gene/P, and Blue Gene/Q

In November 2007, the LLNL Blue Gene/L remained at the number one spot as the world's

fastest supercomputer: 478 TFLOPS

A Blue Gene/P supercomputer

Example: Dam break evolution during 1.5s
- using 30,000 particles takes 12 mins,

if no meaninful information
- using 300,000 particles takes 9.2 hours
on a single-core machine

Why SPH is so expensive in time??
- small∆t with weakly compressible SPH scheme

- high number of neighbours/interactions per particle

SPH runtimes

O(10-6-10-5) with 300,000 particles and more than 16,000 steps

250 neighbours for 300k In 2-D FVM only 4 neighbouring cells

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

SPHysics is a Smoothed Particle Hydrodynamics code primarily to study free-surface flow

phenomena. It has been jointly developed by Johns Hopkins University (U.S.A.), the

University of Vigo (Spain) and the University of Manchester (United Kingdom).

SPHysics project

http://sphysics.org

> 20,000 downloads !!!

SPHysics project

As result of this research, a first serial code was developed in FORTRAN

The SPHysics group has focused its research mainly on wave propagation and interaction with

coastal structures, in 2D and 3D.

SPHysics project

33 22
zx vvv +=

VALIDATION : Dynamic boundary conditions

Koshizuka and Oka, 1996

s-1

VALIDATION : 2D Dam break behavior

Janosiet al., 2004

35

0 0.5 1 1.5 2 2.5

−1

0

1

2

3

Time (s)

V
el

oc
ity

 (
m

 s
−

1)

0.5 1 1.5 2 2.5

−20

0

20

40

Time (s)

F
or

ce
 (

N
)

VALIDATION : 3D Wave-structure interaction

Yeh and Petroff
experiment

SPHysics project

FORTRAN C++
OpenMP
CUDA

However, the SPHysics presents a high computational cost.

To perform simulations in a reasonable runtime with domains as large as the real systems,

we need to develop implementations that can exploit all the parallelism of the current

hardware systems.

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

C++
OpenMP
CUDA

Proposals to accelerate SPH

Proposals to accelerate SPH

Multi-core
OpenMP

GPU
CUDA

Multi-GPU
CUDA + MPI

How to accelerate your SPH code with less than ….

250 EUROS

2 Intel Xeon E5620 + 4 GTX480

GTX 480 at 1.40GHz
with 480 cores

Intel® Core ™ i7 940 at
2.93GHz with 4 cores

450 EUROS

5,000 EUROS

Proposals to accelerate SPH

Multi-core
OpenMP

GPU
CUDA

Multi-GPU
CUDA + MPI

How to accelerate your SPH code with less than ….

250 EUROS

2 Intel Xeon E5620 + 4 GTX480

GTX 480 at 1.40GHz
with 480 cores

Intel® Core ™ i7 940 at
2.93GHz with 4 cores

450 EUROS

5,000 EUROS

4.5x

55x

113x

Proposals to accelerate SPH

Multi-core
OpenMP

GPU
CUDA

Multi-GPU
CUDA + MPI

How to accelerate your SPH code with less than ….

250 EUROS

2 Intel Xeon E5620 + 4 GTX480

GTX 480 at 1.40GHz
with 480 cores

Intel® Core ™ i7 940 at
2.93GHz with 4 cores

450 EUROS

5,000 EUROS

4.5x

55x

113x

55x not only means

that a simulation of 55 mins can be performed in 1 min

but also large simulations can be performed
in a reasonable computational runtime

and different tests can be performed in a short time

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

Programming languages: OpenMP

Implementation techniques and optimizations

Available hardware: Multi-core CPUs

Results and speedups

Multi-core implementation

Multi-core implementation

OpenMP is used to implement the multi-core SPHcode.

ADVANTAGES:

OpenMP is aportable and flexible programming model.

Its implementation is straightforward andno significant changesin comparison
to the single-core code are required.

The time dedicated to communication between different execution threads is
reduced since thesame shared memory is used.

DISADVANTAGES:

Using OpenMP on its own means that this parallelization and potential speedup
are limited to a small number of cores(i.e. the number of cores existing on the
compute node).

Programming languages: OpenMP

Implementation techniques and optimizations

Available hardware: Multi-core CPUs

Results and speedups

Multi-core implementation

Implementation techniques and optimizations

Multi-core implementation

Conceptual diagram of the

CPU implementation of a SPH code

Parallelization of… ???????

In the case of a dam-break simulation:

Figure from Dominguez et al. 2010, IJNM

Force computation is the most expensive step of SPH in terms of computational
runtime. Thus, this is a key process that must be implemented in parallel in order to
improve the performance of the model.NL (CLL) PI SU NL (VL) PI SU

Force computation is the most expensive step of SPH in terms of computational runtime.
This is a key process that must be implemented in parallel in order to accelerate SPH.

Cell linked list Verlet list

Dominguez et al. “Neighbour lists in Smoothed Particle
Hydrodynamics”. IJNMF, 2010.

Multi-core implementation

Implementation techniques and optimizations

Multi-core implementation

Most of the sequential tasks and operations that
involve a loop over all particles are performed
using the different cores of the same CPU.

Several parts of the SPH code can be
parallelized, but mainly, the force calculation
since it is the most expensive part of the
method.

Problems with this parallel programming;
- the concurrent access to the same memory

positions for read-write giving rise to
unexpected results.

- the load balancing to distribute equally the
work among threads.Conceptual diagram of the

CPU implementation of a SPH code

Implementation techniques and optimizations

Multi-core implementation

Symmetry in particle interaction

SSE instructions

Dynamic load balancing

Implementation techniques and optimizations

Multi-core implementation

Symmetry in particle interaction:
The concurrent access to memory to write is avoided since each thread has
its own memory space where the forces of each particle are accumulated.

In 3D, each cell interacts with 14 cells (right) instead of 27 (left).

Implementation techniques and optimizations

Multi-core implementation

SSE instructions

Pseudocode in C++ of the force computation between particles of two cells without vectorial

instructions (up) and grouping in blocks of 4 pair-wise of interaction using SSE instructions (down).

Implementation techniques and optimizations

Multi-core implementation

Dynamic load balancing

The dynamic scheduler of OpenMP is also employed

distributing cells in blocks of 10 among different threads.

Programming languages: OpenMP

Implementation techniques and optimizations

Available hardware: Multi-core CPUs

Results and speedups

Multi-core implementation

250 EUROS
Intel® Core ™ i7 940

at 2.93GHz with 4 cores
with Hyper-threading

Multi-core implementation

2 x Intel Xeon X5500
at 2.67 GHz with 2x4 cores 900 EUROS

Desktop

Workstation

Supercomputing
Center

8 x Intel dual-core
Itanium Montvale

at 1.6 GHz with 16 cores

Available hardware

Intel® Core ™ i7 940
at 2.93GHz with 4 cores
with Hyper-threading

Multi-core implementation

2 x Intel Xeon X5500
at 2.67 GHz with 2x4 cores

Desktop

Workstation

Supercomputing
Center

8 x Intel dual-core
Itanium Montvale

at 1.6 GHz with 16 cores

threads

8 logical threads
with Hyper-threading

8 threads

16 threads

Available hardware

Programming languages: OpenMP

Implementation techniques and optimizations

Available hardware: Multi-core CPUs

Results and speedups

Multi-core implementation

Computational runtimes with the Multi-core CPU model

Multi-core implementation

0

2

4

6

0 200,000 400,000

tim
e

(h
)

Np

i7-th1

i7-th8

Ts1-th1

Ts1-th8

Ft-th1

Ft-th16

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
2 x Intel Xeon X5500 at 2.67 GHz with 2x4 cores

8 x Intel dual-core Itanium Montvale at 1.6 GHz with 16 cores

Computational runtimes with the Multi-core CPU model

Multi-core implementation

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e

(h
)

Np

i7-th1

i7-th8

Ts1-th1

Ts1-th8

Ft-th1

Ft-th16

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
2 x Intel Xeon X5500 at 2.67 GHz with 2x4 cores

8 x Intel dual-core Itanium Montvale at 1.6 GHz with 16 cores

0

1

2

3

4

5

6

7

8

9

10

0 200000 400000 600000 800000 1000000

S
pe

ed
up

Np

CESGA

Xeon

 i7

Computational runtimes with the Multi-core CPU model

Multi-core implementation
CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores

2 x Intel Xeon X5500 at 2.67 GHz with 2x4 cores
8 x Intel dual-core Itanium Montvale at 1.6 GHz with 16 cores

4.5x

7.0x

8.3x

Computational runtimes with the Multi-core CPU model

Multi-core implementation

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e

(h
)

Np

i7-th1

i7-th8

Ts1-th1

Ts1-th8

Ft-th1

Ft-th16

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
2 x Intel Xeon X5500 at 2.67 GHz with 2x4 cores

8 x Intel dual-core Itanium Montvale at 1.6 GHz with 16 cores

CESGA MACHINE IS THE SLOWEST

Computational runtimes with the Multi-core CPU model

Multi-core implementation

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e

(h
)

Np

i7-th1

i7-th8

Ts1-th1

Ts1-th8

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
2 x Intel Xeon X5500 at 2.67 GHz with 2x4 cores

INTEL i7 IS THE CHEAPEST OPTION

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores

Computational runtimes with the Multi-core CPU model

Multi-core implementation

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e

(h
)

Np

i7-th1

i7-th8

1M hours
Speedup vs. 1

CPU
Speedup vs. 4

CPU

1CPU 40.71 1.00

4CPU 9.09 4.48 1.00

Speedup of using the Multi-core CPU model

250 EUROS

Multi-core implementation

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores

Computational runtimes with the Multi-core CPU model

40 h

9 h

4.5x0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e

(h
)

Np

1CPU

4CPU

Multi-core implementation

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

Introduction to GPUs and CUDA

Implementation techniques and optimizations

Available hardware: GPUs

Results and speedups

GPU implementation

•GPUs are a new technology imported from the computergames industry.t

•GPUs are designed totreat large data flows.

•Due to the development of the video games market and multimedia, their
computing powerhas increased much faster than CPUs.

•GPUs are massivelymultithreaded manycore chips. For example, with a
GTX480 card a maximum of 23,040 threads can be in execution simultaneously.

•GPUs appear to be anaccessible alternative to accelerate SPH.

•GPUs arecheap and ease-of-maintenancein comparison with large cluster
machines.

•The GPU parallelisation technique uses theCUDA developed by NVIDIA.

•HOWEVER, AN EFFICIENT AND FULL USE OF THE CAPABILITIES OF
THE GPU IS NOT STRAIGHTFORWARD.

Graphics Processing Unit

Videogame FIFA 12

Graphics Processing Unit

•GPUs are a new technology imported from the computergames industry.t

•GPUs are designed totreat large data flows.

•Due to the development of the video games market and multimedia, their
computing powerhas increased much faster than CPUs.

•GPUs are massivelymultithreaded manycore chips. For example, with a
GTX480 card a maximum of 23,040 threads can be in execution simultaneously.

•GPUs appear to be anaccessible alternative to accelerate SPHsince they are
cheapandease-of-maintenancein comparison with large cluster machines.

•The GPU parallelisation technique uses theCUDA developed by NVIDIA.

•HOWEVER, AN EFFICIENT AND FULL USE OF THE CAPABILITIES OF
THE GPU IS NOT STRAIGHTFORWARD.

CPUs double their capacity each 18 months (x1.5 anual, x60 decade)

GPUs double their capacity each 12 months (x2.0 anual, x1000 decade)

Graphics Processing Unit

•GPUs are a new technology imported from the computergames industry.t

•GPUs are designed totreat large data flows.

•Due to the development of the video games market and multimedia, their
computing powerhas increased much faster than CPUs.

•GPUs are massivelymultithreaded manycore chips. For example, with a
GTX480 card a maximum of 23,040 threads can be in execution simultaneously.

•GPUs appear to be anaccessible alternative to accelerate SPHsince they are
cheapandease-of-maintenancein comparison with large cluster machines.

•The GPU parallelisation technique uses theCUDA developed by NVIDIA.

•HOWEVER, AN EFFICIENT AND FULL USE OF THE CAPABILITIES OF
THE GPU IS NOT STRAIGHTFORWARD.

General ideas about CUDA:

Kernel: code to be executed on GPU

Thread: execution task

Block: group of threads that executes the kernel

Grid: array of blocks that executes the same kernel

Warp: active blocks assigned to a multiprocessor

are executed in groups of 32 tasks-threads

Graphics Processing Unit

Memory Architecture

Thread: private local memory

Block: shared memory
visible to all threads of the block

All threads have access to the
same global memory

2 read-only memory spaces:
the constant memory
and texture memory espaces

Graphics Processing Unit

Introduction to GPUs and CUDA

Implementation techniques and optimizations

Available hardware: GPUs

Results and speedups

GPU implementation

• Conceptually, an SPH code is an iterative process consisting of three main steps:

-neighbour list:
particles only interact with surrounding particles located at a given distance so the
domain is divided in cells of the kernel size to reduce the neighbour search to the
adjacent cells;

-particle interaction:
each particle only looks for neighbours at the adjacent cells, after verifying that the
distance between particles lies within the support of the kernel, the conservation
laws of continuum fluid dynamics are computed for the pair-wise interaction of
particles;

-system update:
once the forces between neighbouring particles have been evaluated, all physical
magnitudes of the particles are updated at the next time step.

NEIGHBOR

LIST

PARTICLE

INTERACTION

SYSTEM

UPDATE

GPU implementation

GPU implementation of… ???????

In the case of a dam-break simulation:

Figure from Dominguez et al. 2010, IJNM

Force computation is the most expensive step of SPH in terms of computational
runtime. Thus, this is a key process that must be implemented in parallel in order to
improve the performance of the model.

GPU implementation

NL (CLL) PI SU NL (VL) PI SU

Force computation is the most expensive step of SPH in terms of computational runtime.
This is a key process that must be implemented in parallel in order to accelerate SPH.

Cell linked list Verlet list

Dominguez et al. “Neighbour lists in Smoothed Particle
Hydrodynamics”. IJNMF, 2010.

GPU implementation

Conceptual diagram of the

CPU implementation of a SPH code

Conceptual diagram of the

GPU implementation of a SPH code

CPU / C++ GPU / CUDA

i → j = 2
i → j = 1

aij=3i → j = 3

ai = ai1 + ai2 + ai3 + …

GPU implementation
GPU implementation of PARTICLE INTERACTION:

CPU / C++ GPU / CUDA

i → j = 1 aij=1

ai = ai1 + …

GPU implementation
GPU implementation of PARTICLE INTERACTION:

GPU / CUDA

g
u +∇














+=








∑ iji

j
2
i

i
2
j

j
j

i

W
ρ

p

ρ

p
m-

dt

d
i → j

GPU implementation

GPU / CUDA

g
u +∇














+=








∑ iji

j
2
i

i
2
j

j
j

i

W
ρ

p

ρ

p
m-

dt

d
i → j

Particle interaction can be implemented on GPU considering
one execution thread to compute, for only one particle,

the force resulting from the interaction with all its neighbours.

GPU implementation

GPU implementation

Conceptual diagram of the

partial GPU implementation of a SPH code

Conceptual diagram of the

full GPU implementation of a SPH code

GPU implementation of NEIGHBOUR LIST:

Cell-linked list, divided in different operations:
(i) domain division into square cells of side 2h, (or the size of the kernel domain)
(ii) determining the cell to which each particle belongs,
(iii) reordering the particles according to the cells (radixsort algorithm by CUDA)
(iv) ordering all arrays with data associated to each particle and, finally
(v) generating an array with the position index of the first particle of each cell.

GPU implementation
Dominguez et al. “Neighbour lists in Smoothed Particle

Hydrodynamics”. IJNMF, 2010.

GPU implementation of SYSTEM UPDATE:

This process consists on tasks that can be easily parallelized as updating the values of
all particle data for the next time step.

We need:

- the current particle data

- acceleration and density derivative

- computing the new value of the time step according to Monaghan and Kos (1999)

- the maximum and minimum values of different variables (force, velocity and

sound speed) are calculated using the reduction algorithm by CUDA.

GPU implementation

Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA

DOCUMENTATION

RECIPES TO COOK SPH-GPU

GPU implementation

PROBLEMS TO BE SOLVED:

-Memory usage

-Divergence

-Coalescence

-Occupancy

Graphics Processing Unit

Memory Architecture

Thread: private local memory

Block: shared memory
visible to all threads of the block

All threads have access to the
same global memory

2 read-only memory spaces:
the constant memory
and texture memory espaces

Graphics Processing Unit

Memory usage

Divergence

Graphics Processing Unit

GPU threads are grouped in sets of 32 namedwarps(CUDA language).

When a task is being executed over a warp, the32 threads carry out this task
simultaneously.

However,due to conditional flow instructions in the code, not all the threads will
perform the same operation, sothe different tasks are executed in a sequential
way giving rise to a high loss of efficiency.

This divergence problem appears duringparticle interaction since each thread has
to evaluate what potential neighbors are real neighbors of the particle before
computing the force

Divergence

Graphics Processing Unit

16 threads executing the
same task over 16 values

each colour represents a task

NO DIVERGENT WARPS

16 threads executed
simultaneously

Graphics Processing Unit

16 threads executing
three different tasks (IF)

over 16 values

execution of the 16 threads
will take the runtime needed to carry out

the three tasks sequentially

+ +

Divergence

DIVERGENT WARPS !!!

each colour represents a task

Coalescence

Graphics Processing Unit

The globalmemory of the GPU is accessed in blocks of 32, 64 or 128 bytes,
so the number of accesses to satisfy a warp depends on how grouped data are.

In particle interaction ,
although particle data are reordered according to the cellsthey belong to, a
regular memory access is not possible since each particle has different neighbors
and therefore each thread will access to different memory positions, which
may, eventually, be far from the rest of the positions in the warp.

Coalescence

Graphics Processing Unit

16 threads executing
over 16 values

16 values stored in
16 consecutive memory positions

COALESCED ACCESS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Only 1 access to
memory is required

Coalescence

Graphics Processing Unit

16 threads executing
over 16 values

16 values stored in
different memory positions

NON COALESCED ACCESS

1
2
3
4
5
6

545
546
547
548
1256
1257
4513
4514
4515
4516

4 memory accesses
are required

Occupancy

Graphics Processing Unit

Occupancy isthe ratio of active warps to the maximum number of warps
supported on a multiprocessorof the GPU or Streaming Multiprocessor (SM).

Since the access to the GPU global memory is very irregular during the particle
interaction, it isessential to have the largest number of active warpsin order
to hide the latencies of memory access and maintain the hardware as busy as
possible.

The number of active warps depends onthe registers required for the CUDA
kernel, the GPU specifications and the number of threads perblock.

Technical specifications 1.0 1.1 1.2 1.3 2.x

Max. of threads per block 512 1024

Max. of resident blocks per SM 8

Max. of resident warps per SM 24 32 48

Max. of resident threads per SM 768 1024 1536

Max. of 32-bit registers per SM 8 K 16 K 32 K

Occupancy

Graphics Processing Unit

Occupancy

Graphics Processing Unit

Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA

DOCUMENTATION

RECIPES TO COOK SPH-GPU

GPU implementation

GPU implementation

Conceptual diagram of the

partial GPU implementation of a SPH code

Conceptual diagram of the

full GPU implementation of a SPH code

The most efficient option is to keep all data in the memory of the GPU
where the three main processes of SPH are executed in parallel.

Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

GPU implementation

GPU implementation

CPU-GPU COMMUNICATION

- Initially, data were allocated on CPU,
so there is a first memory transfer

(from CPU to GPU)

- All particle information remains
on the GPU memory.

- When saving data is required,
only the desired data is transfer
from GPU to CPU.

Conceptual diagram of the

full GPU implementation of a SPH code

Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

GPU implementation

Basic strategies for Performance Optimization

GPU implementation

The use of the constant memory and registers is maximized

Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

IMPROVED

GPU implementation

GPU implementation

- code divergence can appear since when the possible neighbours of a particle are
evaluated, some of them are real neighbours and the force computation is carried out
while other particles are not real neighbours and no computation is performed.

16 threads executing
two different tasks

over 16 values

execution of the 16 threads
will take the runtime needed to carry

out the two tasks sequentially

+

Divergence
DIVERGENT WARPS !!!

GPU implementation

Runtime of
computing force

Total runtime = Runtime of
no computation

+

real neighbour

GPU implementation
- code divergence can appear since when the possible neighbours of a particle are

evaluated, some of them are real neighbours and the force computation is carried out
while other particles are not real neighbours and no computation is performed.

- using cells of size h instead of 2h, we increase the number of half-warps with only one
execution task (all real neighbours or none), thus we reduce the divergence

h

Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

IMPROVED

IMPROVED

GPU implementation

GPU implementation

- the access to the global memory of the device is irregular because there is no way to
organise the data to get a coalescent access for all the particles.

GPU implementation

Positions in
the memory of

the device

1027
3655
2769

- the access to the global memory of the device is irregular because there is no way to
organise the data to get a coalescent access for all the particles.

Coalescence

16 threads executing
over 16 values

16 values stored in
different memory positions

NON COALESCED ACCESS

4 memory accesses
are required
instead of 1

GPU implementation

1
2
3
4
5
6

545
546
547
548
1256
1257
4513
4514
4515
4516

GPU implementation

6215-6285

3555-3595

1025-1075

Positions in
the memory of

the device

- the access to the global memory of the device is irregular because there is no way to
organise the data to get a coalescent access for all the particles.

- reordering particles, more neighbours are stored in consecutive memory positions

Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

IMPROVED

IMPROVED

IMPROVED

IMPROVED

GPU implementation

GPU implementation
We use a file with the number of registers we can use for all the execution kernels
depending on the compute capability of the card.

Starting from this value we can adjust the block size depending on the GPU card to
obtain the maximum occupancy.

Basic strategies for Performance Optimization

Expose as much parallelism as possible

Minimize CPU ↔GPU data transfers

Optimize memory usage for maximum bandwidth

Minimize divergent warps

Optimize memory access patterns

Avoiding non-coalesced accesses

Maximize occupancy to hide latencyEE CUDA

DOCUMENTATION

RECIPES TO COOK SPH-GPU

DONE

DONE

IMPROVED

IMPROVED

IMPROVED

IMPROVED

DONE

GPU implementation

Introduction to GPUs and CUDA

Implementation techniques and optimizations

Available hardware: GPUs

Results and speedups

GPU implementation

Available hardwareGPU implementation

GPU # of cores

Processor

clock

(GHz)

Memory

(GB)

Power

usage

(watts)

Heat (ºC) Price (€)

M1060 240 1.36 4 188

good

cooling

system

for server

1200*

GTX 285 240 1.48 1 204 105 330*

GTX 480 480 1.40 1.5 384 94 450*

GTX 590 1024 2x1.54 3 496 74 650

* year 2009

Introduction to GPUs and CUDA

Implementation techniques and optimizations

Available hardware: GPUs

Results and speedups

GPU implementation

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores

Computational runtimes with the Multi-CPU model

40 h

9 h

4.5x0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e

(h
)

Np

1CPU

4CPU

GPU implementation

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Computational runtimes with the Multi-CPU and GPU model

45 min

40 h

9 h

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e

(h
)

Np

1CPU

4CPU

1GPU

GPU implementation

Speedup of using the GPU model

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

55x

GPU implementation

0

10

20

30

40

50

60

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

S
pe

ed
up

Np

The FERMI card is55 times more efficient than the best CPU single-core code.

The achievedperformance can be compared to the big cluster machines.

Following Maruzewski et al. 2010:
100 cores with efficiency of 60% of the supercomputer IBMBlue Gene/L
to equal the speedup achieved by only a Fermi Card

1 GTX480= 100 cores of BlueGene

GPU implementation

The FERMI card is55 times more efficient than the best CPU single-core code.

The achievedperformance can be compared to the big cluster machines.

Following Maruzewski et al. 2010:
100 cores with efficiency of 60% of the supercomputer IBMBlue Gene/L
to equal the speedup achieved by only a Fermi Card

1 GTX480= 450 EUROS

GPU implementation

1M hours
Speedup vs. 1

CPU
Speedup vs. 4

CPU

1CPU 40.71 1.00

4CPU 9.09 4.48 1.00

1GPU 0.75 54.61 12.19

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Speedup of using the GPU model

450 EUROS

GPU implementation

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

Multi-GPU implementation

The memory requirements are still alimitation for a single GPU, using
more than one GPU appears to be the best development to continue
accelerating SPH simulations.

In order to allow different devices communicating with eachother, the
Message Passing Interface(MPI) is used jointly with CUDA to implement
a multi-GPU version of SPH.

MPI presents the advantageof using different compute nodes hosting
multiple devices instead of only one as it happens with OpenMP.

The multi-GPU implementation of Valdez-Balderas et al., 2011 consists of
assigningdifferent portions of the physical systemto different GPUs

After each computation step,data needs to be transferred between devices;
-the information of particles that migrate between GPUs (physical sub-domains)
-or particles that belong to shared spaces where data is usedby several GPUs.

With the CUDA v4.0, direct GPU-GPU
communication will be supported.

But now, the memory transfer between
different GPUs is carried out by
-GPU-CPU,
-CPU-CPU and
-CPU-GPU communications

Multi-GPU implementation

The multi-GPU implementation of Valdez-Balderas et al., 2011 consists of
assigningdifferent portions of the physical systemto different GPUs

After each computation step,data needs to be transferred between devices;
-the information of particles that migrate between GPUs (physical sub-domains)
-or particles that belong to shared spaces where data is usedby several GPUs.

With the CUDA v4.0, direct GPU-GPU
communication will be supported.

But now, the memory transfer between
different GPUs is carried out by
-GPU-CPU,
-CPU-CPU and
-CPU-GPU communications

Multi-GPU implementation

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Computational runtimes with the Multi-CPU and GPU model

45 min

40 h

9 h

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e

(h
)

Np

1CPU

4CPU

1GPU

Multi-GPU implementation

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Computational runtimes with the Multi-CPU and GPU model

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000

tim
e

(h
)

Np

1CPU

4CPU

1GPU

2GPU

3GPU

4GPU

Multi-GPU implementation

0

10

20

30

40

50

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

tim
e

(h
)

Np

1CPU

4CPU

1GPU

2GPU

3GPU

4GPU

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

5M on CPU?

Multi-GPU implementation

Computational runtimes with the Multi-CPU and Multi -GPU model

Multi-GPU implementation

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Computational runtimes with the Multi-CPU and Multi -GPU model

0

2

4

6

8

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

tim
e

(h
)

Np

1CPU

4CPU

1GPU

2GPU

3GPU

4GPU

0

2

4

6

8

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

tim
e

(h
)

Np

1GPU

2GPU

3GPU

4GPU

Multi-GPU implementation

GPU GTX 480 at 1.40GHz with 480 cores

Computational runtimes with the Multi-GPU model

7.71 h for 5M

5.73 h for 5M

4.08 h for 5M

3.27 h for 5M

0

0.5

1

1.5

2

2.5

3

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

S
pe

ed
up

Np

4GPUvs1GPu 3GPUvs1GPU 2GPUvs1GPU

Multi-GPU implementation

4 GPUs hosted in the same CPU

GPU GTX 480 at 1.40GHz with 480 cores

Speedup of using the Multi-GPU model

2.5x
Without
dynamic

load
balancing

Multi-GPU implementation

4 GPUs hosted in the same CPU

4 GPUs hosted in 2 CPUs (2 per node)

3 GPUs hosted in 3 different CPUs

4 GPUs hosted in the same CPU

Multi-GPU implementation

no cost in the inter-CPU communications

IF GPUs hosted in different CPUs

Multi-GPU implementation

With the CUDA v4.0, direct GPU-GPU communication will be supported.

But now, the memory transfer between different GPUs is carried out by
GPU-CPU
CPU-CPU using MPI
CPU-GPU communications

Multi-GPU implementation

4 GPUs hosted in the same CPU 4 GPUs hosted in 4 different CPUs

Multi-GPU implementation

Multi-GPU implementation

4 GPUs hosted in the same CPU

4 GPUs hosted in 4 different CPUs

cost in the inter-CPU communications

Multi-GPU implementation

4 GPUs in 4 different CPUs

inter-CPU cost increases with the number of particles

1M hours
Speedup vs. 1

CPU
Speedup vs. 4

CPU

1CPU 40.71 1.00

4CPU 9.09 4.48 1.00

1GPU 0.75 54.61 12.19

2GPU 0.57 71.63 15.99

3GPU 0.42 96.33 21.51

4GPU 0.36 113.22 25.28

CPU Intel® Core ™ i7 940 at 2.93GHz with 4 cores
GPU GTX 480 at 1.40GHz with 480 cores

Speedup of using the Multi-GPU model

Multi-GPU implementation

5,000 EUROS

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

RENEWABLE WAVE ENERGY RESEARCH

WAVE DRAGON PELAMIS POWERBUOY

Numerical tool to design the devices and to describe their behaviour

Applications

COASTAL PROTECTION

The passage of storms near coastal areas gives rise to dangerous waves on the shore line.

Dangerous waves in San Sebastián coast, 2005 Storms effect in A Coruña coast, 2008

Applications

COASTAL PROTECTION

Natural disasters have occurred in the last years.

Hurricane Katrina in New Orleans, 2005 Tsunami in Japan, 2011

Applications

HARBOUR DESIGN

Port Olimpic in BarcelonaDikes overtopping

Real scenarios must be studied in detailed

Applications

Applications

Coastal protection

Harbour design

Industrial applications

Simulating million particles in a few hours allows us to investigate:

- the damage due to extreme waves
- the flooded areas
- valuable information about overtopping
- risk maps in coastal areas

Coastal protection

Promenade-wave interaction
with 5,342,325 particles

domain 600m x 600m x 450m
dp= 1.2m
h=1.8m

24 seconds of physical time
36,128 steps

take 3.4 hours on GTX480

Coastal protection

Coastal protection

Seawalk-wave interaction with
3,425,379 particles

domain 22m x 4m x 6m
dp= 0.026m
h=0.039m

8 seconds of physical time
120,010 steps

take 7.5 hours on GTX480

Coastal protection

We can measure the wave height

We can compute the forces exerted
onto the coastal structures

Coastal protection

Hs = 4 m ; Tp = 2 s

Coastal protection

Coastal protection

BENCH

Coastal protection

LAMPPOST

Coastal protection

BALUSTRADE

Coastal protection

Simulating million particles in a few hours allows us to investigate:

- the damage due to extreme waves
- the flooded areas
- valuable information about overtopping
- risk maps in coastal areas

Now we can simulate different Hs and Tp of the incoming waves
and design the best scenerio for mitigation.

Coastal protection

Promenade-wave interaction
with 5,342,325 particles

domain 600m x 600m x 450m
dp= 1.2m
h=1.8m

24 seconds of physical time
36,128 steps

take 3.4 hours on GTX480

5,342,325 particles close to the maximum memory space of
ONE GTX 480

If we need h<1.8m, we will need multi-GPUs

Coastal protection

Industrial applications

Industrial applications

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

150 files are saved for a physical time of 1.5 seconds.

Binary format BINX consumes less memory, reduction of 80% compared to ASCII.

Time dedicated to save the output data in binary format takes the 0.1% of the total
simulation.

FILE FORMAT

Memory requirements and computational runtime for different output data formats.

In order to create a real complex geometry to reproduce an industrial problem the
first main issue is the resolution with which the objects are represented.

To obtain realistic results with SPH it is appropriate that the initial geometry is as
closeas possible to a real industrial problem.

This drawback can be solved when several million particles are used in the
simulation. Thus, a new pre-processing tool has been developed to deal with more
complex geometries: GenCase code.

PRE-PROCESSING

PLY, STL and VTK can be loaded by GenCase
The file is actually a set of triangles, each of these triangles are converted to particles

3DS DXF DWG GIS H5PART CSV MAX SHP CAD
PLY STL VTK

PLY -> exportable using BLENDER
STL -> exportable using 3DSTUDIO
VTK -> PARAVIEW

(files that contain vertices and polygons)

PRE-PROCESSING

PLY, STL and VTK can be loaded by GenCase
The file is actually a set of triangles, each of these triangles are converted to particles

Importing CAD files

PRE-PROCESSING

PLY, STL and VTK can be loaded by GenCase
The file is actually a set of triangles, each of these triangles are converted to particles

Importing 3DStudio objects

PRE-PROCESSING

PRE-PROCESSING

Importing 3DStudio objects

PRE-PROCESSING

PRE-PROCESSING

KMZ from GOOGLE EARTHPRE-PROCESSING

SKP from GOOGLE Sketchup 8PRE-PROCESSING

3DS from Autodesk 3ds MAX 8PRE-PROCESSING

VTK(polygons) from ParaviewPRE-PROCESSING

VTK(points) from ParaviewPRE-PROCESSING

POST-PROCESSING

305,252 particles

POST-PROCESSING

Mass: [0 , 0.0004]

Isosurface for 0.0002

POST-PROCESSING

Mass: [0 , 0.0004]

Isosurface for 0.0002

POST-PROCESSING

Import VTK objects

POST-PROCESSING

POST-PROCESSING

Corridor of the department at University of Vigo

POST-PROCESSING

POST-PROCESSING

POST-PROCESSING

- Numerical methods

- SPH method and computational runtimes

- SPHysics and DualSPHysics project

- How to accelerate SPH

- Multi-CPU implementation

- GPU-implementation

- Multi-GPU implementation

- Applications

- Needs when accelerating the code: format files, pre/post-processing

- DualSPHysics code

Outline

DualSPHysics code

www.sphysics.org

www.dual.sphysics.org

More than 1,000 downloads of v1.0 during the first 90 days
Available now v1.2 with Multi-core implementation.

DualSPHysics code

www.dual.sphysics.org

GenCase
Pre-processing

DualSPHysics
SPH solver

BoundaryVTK
PartVTK
Measutool

Post-processing

DualSPHysics code

HELP :
•ContainsCaseTemplate.xml, a XML example with all the different labels and formats that
can be used in the input XML file.
•HELP_NameCode.outincludes the HELP about the execution parameters of the different
codes.

MOTION :
•Contains the bat fileMotion.bat to perform the examples with the different type of
movements that can be described with DualSPHysics. Eight examples canbe carried out
(Motion01.xml…, Motion08.xml).
•The text file motion08mov_f3.out describes the predefined motion used in the eighth
example.

DualSPHysics code

TESTCASES
1. Dambreak

DualSPHysics code

TESTCASES
2. Wavemaker

DualSPHysics code

TESTCASES
3. RealFace

DualSPHysics code

EXECS:

•Contains all the executables codes.
� GenCase - pre-processing tool
� DualSPHysics - SPH solver
� BoundaryVTK - post-processing tool
� PartVTK - post-processing tool
� MeasureTool - post-processing tool

•The text fileptxas_info.outis used to optimise the block size for the different CUDA
kernels on GPU executions, to maximise the occupancy.

DualSPHysics code

DualSPHysics code

SOFTWARE:

Codes
- SPHysics fromwww.sphysics.org
- DualSPHysics fromwww.dual.sphysics.org

Pre-processing
- FreeCad
- Qgis
- EveryDWG

Post-processing
- Paraview from www.paraview.org
- Blender from www.blender.org

Compilers
- CUDA from www.nvidia.com
- GCC

DualSPHysics code

www.vimeo.com/dualsphysics

DualSPHysics code

Conclusions

We have been able to simulate 45 million particles
on the nVidia TESLA S2050 with 448 cores and 3GB memory.

(9 million per GPU in 4 GPUs)

This would be impossible to fit on a single GPU and
it was possible without the need of large, expensive cluster of CPUs.

Our new SPH models are capable to deal with
real-life engineering CFD problems.

Multi-core
-Combination of OpenMP with MPI

GPU
-Include more SPH formulations expensive in time
-Double precision
-New strategies to optimize particle interaction
-New capabilities of CUDA 4.0

Multi-GPU
-Dynamic load balancing
-2D domain decomposition
-Use of Infiniband to decrease CPU-CPU communication
-Test pinned memory to decrease GPU-CPU communication
-CUDA 4.0 to fully investigate inter-GPU communications

-One thread per GPU limitation removed

-GPUDirect v2.0

-Unified virtual addressing UVA

Future developments

